Skip to main content
Log in

Uptake, transport and distribution of molybdenum in two oilseed rape (Brassica napus L.) cultivars under different nitrate/ammonium ratios

不同NO3 :NH4 +比对两种甘蓝型油菜钼吸收、转 运和分布的影响

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Objectives

To investigate the effects of different nitrate sources on the uptake, transport, and distribution of molybdenum (Mo) between two oilseed rape (Brassica napus L.) cultivars, L0917 and ZS11.

Methods

A hydroponic culture experiment was conducted with four nitrate/ammonium (NO3 :NH4 +) ratios (14:1, 9:6, 7.5:7.5, and 1:14) at a constant nitrogen concentration of 15 mmol/L. We examined Mo concentrations in roots, shoots, xylem and phloem sap, and subcellular fractions of leaves to contrast Mo uptake, transport, and subcellular distribution between ZS11 and L0917.

Results

Both the cultivars showed maximum biomass and Mo accumulation at the 7.5:7.5 ratio of NO3 :NH4 + while those were decreased by the 14:1 and 1:14 treatments. However, the percentages of root Mo (14.8% and 15.0% for L0917 and ZS11, respectively) were low under the 7.5:7.5 treatment, suggesting that the equal NO3 :NH4 + ratio promoted Mo transportation from root to shoot. The xylem sap Mo concentration and phloem sap Mo accumulation of L0917 were lower than those of ZS11 under the 1:14 treatment, which suggests that higher NO3 :NH4 + ratio was more beneficial for L0917. On the contrary, a lower NO3 :NH4 + ratio was more beneficial for ZS11 to transport and remobilize Mo. Furthermore, the Mo concentrations of both the cultivars’ leaf organelles were increased but the Mo accumulations of the cell wall and soluble fraction were reduced significantly under the 14:1 treatment, meaning that more Mo was accumulated in organelles under the highest NO3 :NH4 + ratio.

Conclusions

This investigation demonstrated that the capacities of Mo absorption, transportation and subcellular distribution play an important role in genotype-dependent differences in Mo accumulation under low or high NO3 :NH4 + ratio conditions.

摘要

目的

采用不同NO3 :NH4 +比的营养液,探索不同氮源 对钼元素在两种甘蓝型油菜(L0917 和ZS11)中 的吸收、转运和分布的影响及品种间的差异。

创新点

在不同氮源条件下,从组织分布、汁液运输、亚 细胞分布以及品种等方面研究了甘蓝型油菜的 钼营养状况。

方法

将甘蓝型油菜L0917 和ZS11 的幼苗在正常营养 液培养20 天后,分别转移至4 种NO3 :NH4 +比 (14:1、9:6、7.5:7.5、1:14)且总氮为15 mmol/L 的营养液中培养15 天后收获。采用原子吸收分 光光度计-石墨炉法测定根、茎和叶不同部位钼含 量,木质部和韧皮部液钼含量,叶肉细胞细胞壁 组分、细胞器组分和可溶性组分钼含量。

结论

在高或低NO3 :NH4 +比条件下,高的钼吸收能力、 木质部转运、韧皮部再迁移以及叶片亚细胞钼储 存在甘蓝型油菜钼积累上扮演重要角色。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babalar, M., Sokri, S.M., Lesani, H., et al., 2015. Effects of nitrate:ammonium ratios on vegetative growth and mineral element composition in leaves of apple. J. Plant Nutr., 38(14):2247–2258. http://dx.doi.org/10.1080/01904167.2014.964365

    Article  CAS  Google Scholar 

  • Barlóg, P., Grzebisz, W., 2004a. Effect of timing and nitrogen fertilizer application on winter oilseed rape (Brassica napus L.). I. Growth dynamics and seed yield. J. Agron. Crop Sci., 190(5):305–313. http://dx.doi.org/10.1111/j.1439-037X.2004.00108.x

    Article  Google Scholar 

  • Barlóg, P., Grzebisz, W., 2004b. Effect of timing and nitrogen fertilizer application on winter oilseed rape (Brassica napus L.). II. Nitrogen uptake dynamics and fertilizer efficiency. J. Agron. Crop Sci., 190(5):314–323. http://dx.doi.org/10.1111/j.1439-037X.2004.00109.x

    Article  Google Scholar 

  • Behrens, T., Horst, W.J., Wiesler, F., 2002. Effect of rate, timing and form of nitrogen application on yield formation and nitrogen balance in oilseed rape production. In: Horst, W.J., Schenk, M.K., Bürkert, A., et al. (Eds.), Plant Nutrition. Springer Netherlands, p.800–801. http://dx.doi.org/10.1007/0-306-47624-X_389

  • Britto, D.T., Kronzucker, H.J., 2002. NH4 + toxicity in higher plants: a critical review. J. Plant Physiol., 159(6):567–584. http://dx.doi.org/10.1078/0176-1617-0774

    Article  CAS  Google Scholar 

  • Cao, Q., Zhao, C., Qin, J., et al., 2012. Analysis on content of soil-available molybdenum and its influencing factors in some plantations in Hainan rubber planting areas. J. Southern Agric., 43(10):1514–1517 (in Chinese).

    CAS  Google Scholar 

  • Chatterjee, C., Nautiyal, N., 2001. Molybdenum stress affects viability and vigor of wheat seeds. J. Plant Nutr., 24(9): 1377–1386. http://dx.doi.org/10.1081/PLN-100106988

    Article  CAS  Google Scholar 

  • Dickson, R.W., Fisher, P.R., Argo, W.R., et al., 2016. Solution ammonium:nitrate ratio and cation/anion uptake affect acidity or basicity with floriculture species in hydroponics. Sci. Hortic., 200:36–44. http://dx.doi.org/10.1016/j.scienta.2015.12.034

    Article  CAS  Google Scholar 

  • Esteban, R., Ariz, I., Cruz, C., et al., 2016. Review: mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci., 248:92–101. http://dx.doi.org/10.1016/j.plantsci.2016.04008

    Article  CAS  PubMed  Google Scholar 

  • Fu, X., Dou, C., Chen, Y., et al., 2011. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J. Hazard. Mater., 186(1):103–107. http://dx.doi.org/10.1016/j.jhazmat.2010.10.122

    Article  CAS  PubMed  Google Scholar 

  • Hale, K.L., McGrath, S.P., Lombi, E., et al., 2001. Molybdenum sequestration in Brassica species. A role for anthocyanins? Plant Physiol., 126(4):1391–1402. http://dx.doi.org/10.1104/pp.126.4.1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havemeyer, A., Lang, J., Clement, B., 2011. The fourth mammalian molybdenum enzyme mARC: current state of research. Drug Metab. Rev., 43(4):524–539. http://dx.doi.org/10.3109/03602532.2011.608682

    Article  CAS  PubMed  Google Scholar 

  • Hille, R., Nishino, T., Bittner, F., 2011. Molybdenum enzymes in higher organisms. Coordin. Chem. Rev., 255(9-10): 1179–1205. http://dx.doi.org/10.1016/j.ccr.2010.11.034

    Article  CAS  Google Scholar 

  • Ide, Y., Kusano, M., Oikawa, A., et al., 2011. Effects of molybdenum deficiency and defects in molybdate transporter MOT1 on transcript accumulation and nitrogen/ sulphur metabolism in Arabidopsis thaliana. J. Exp. Bot., 62(4):1483–1497. http://dx.doi.org/10.1093/jxb/erq345

    Article  CAS  PubMed  Google Scholar 

  • Jampeetong, A., Brix, H., 2009. Effects of NH4 + concentration on growth, morphology and NH4 + uptake kinetics of Salvinia natans. Ecol. Eng., 35(5):695–702. http://dx.doi.org/10.1016/j.ecoleng.2008.11.006

    Article  Google Scholar 

  • Jongruaysup, S., Dell, B., Bell, R.W., 1994. Distribution and redistribution of molybdenum in black gram (Vigna mungo L. Hepper) in relation to molybdenum supply. Ann. Bot., 73(2):161–167. http://dx.doi.org/10.1006/anbo.1994.1019

    Article  CAS  Google Scholar 

  • Jongruaysup, S., Dell, B., Bell, R.W., et al., 1997. Effect of molybdenum and inorganic nitrogen on molybdenum redistribution in black gram (Vigna mungo L. Hepper) with particular reference to seed fill. Ann. Bot., 79(1):67–74. http://dx.doi.org/10.1006/anbo.1996.0304

    Article  CAS  Google Scholar 

  • Kovács, B., Puskás-Preszner, A., Huzsvai, L., et al., 2015. Effect of molybdenum treatment on molybdenum concentration and nitrate reduction in maize seedlings. Plant Physiol. Biochem., 96(6):38–44. http://dx.doi.org/10.1016/j.plaphy.2015.07.013

    Article  PubMed  Google Scholar 

  • Küpper, H., Zhao, F.J., McGrath, S.P., 1999. Cellular compartmentation of zinc in leaves of the hyper-accumulator Thlaspi caerulescens. Plant Physiol., 119(1):305–312. http://dx.doi.org/10.1104/pp.119.1.305

    Article  PubMed Central  Google Scholar 

  • Leiva-Candia, D.E., Ruz-Ruiz, M.F., Pinzi, S., et al., 2013. Influence of nitrogen fertilization on physical and chemical properties of fatty acid methyl esters from Brassica napus oil. Fuel, 111(3):865–871. http://dx.doi.org/10.1016/j.fuel.2013.04.006

    Article  CAS  Google Scholar 

  • Li, Q., Li, B.H., Kronzucker, H.J., et al., 2010. Root growth inhibition by NH4 + in Arabidopsis is mediated by the root tip and is linked to NH4 + efflux and GMPase activity. Plant Cell Environ., 33(9):1529–1542. http://dx.doi.org/10.1111/j.1365-3040.2010.02162.x

    CAS  PubMed  Google Scholar 

  • Li, T.Q., Yang, X.E., Yang, J.Y., et al., 2006. Zn accumulation and subcellular distribution in the Zn hyperaccumulator Sedum alfredii Hance. Pedosphere, 16(5):616–623. http://dx.doi.org/10.1016/S1002-0160(06)60095-7

    Article  CAS  Google Scholar 

  • Li, Y., Zhou, C., Huang, M., et al., 2016. Lead tolerance mechanism in Conyza canadensis: subcellular distribution, ultrastructure, antioxidative defense system, and phytochelatins. J. Plant Res., 129(2):251–262. http://dx.doi.org/10.1007/s10265-015-0776-x

    Article  CAS  PubMed  Google Scholar 

  • Liu, G., La, G., Li, Z., et al., 2012. Evaluation of available micronutrient contents in tobacco planting soils in Bijie. Chinese Tobacco Sci., 33(3):23–27 (in Chinese).

    Google Scholar 

  • Liu, H., Hu, C., Sun, X., et al., 2010. Interactive effects of molybdenum and phosphorus fertilizers on photosynthetic characteristics of seedlings and grain yield of Brassica napus. Plant Soil, 326(1):345–353. http://dx.doi.org/10.1007/s11104-009-0014-1

    Article  CAS  Google Scholar 

  • Liu, N., Zhang, L., Meng, X., et al., 2014. Effect of nitrate/ ammonium ratios on growth, root morphology and nutrient elements uptake of watermelon (Citrullus lanatus) seedlings. J. Plant Nutr., 37(11):1859–1872. http://dx.doi.org/10.1080/01904167.2014.911321

    Article  Google Scholar 

  • Lu, Y.L., Xu, Y.C., Shen, Q., et al., 2009. Effects of different nitrogen forms on the growth and cytokinin content in xylem sap of tomato (Lycopersicon esculentum Mill.) seedlings. Plant Soil, 315:67–77. http://dx.doi.org/10.1007/s11104-008-9733-y

    Article  CAS  Google Scholar 

  • Mendel, R.R., 2011. Cell biology of molybdenum in plants. Plant Cell Rep., 30(10):1787–1797. http://dx.doi.org/10.1007/s00299-011-1100-4

    Article  CAS  PubMed  Google Scholar 

  • Nie, Z., Hu, C., Liu, H., et al., 2014. Differential expression of molybdenum transport and assimilation genes between two winter wheat cultivars (Triticum aestivum). Plant Physiol. Bioch., 82(3):27–33. http://dx.doi.org/10.1016/j.plaphy.2014.05.002

    Article  CAS  Google Scholar 

  • Nimptsch, J., Pflugmacher, S., 2007. Ammonia triggers the promotion of oxidative stress in the aquatic macrophyte Myriophyllum mattogrossense. Chemosphere, 66(4):708–714. http://dx.doi.org/10.1016/j.chemosphere.2006.07.064

    Article  CAS  PubMed  Google Scholar 

  • Peuke, A.D., 2010. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis. J. Exp. Bot., 61(3):635–655. http://dx.doi.org/10.1093/jxb/erp352

    Article  CAS  PubMed  Google Scholar 

  • Rathke, G.W., Behrens, T., Diepenbrock, W., 2006. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agric. Ecosyst. Environ., 117(2-3):80–108. http://dx.doi.org/10.1016/j.agee.2006.04.006

    Article  CAS  Google Scholar 

  • Shi, X.Z., Yu, D.S., Warner, E.D., et al., 2006. Cross-reference system for translating between genetic soil classification of China and soil taxonomy. Soil Sci. Soc. Am. J., 70(1): 78–83. http://dx.doi.org/10.2136/sssaj2004.0318

    Article  CAS  Google Scholar 

  • Sokri, S.M., Babalar, M., Barker, A.V., et al., 2015. Fruit quality and nitrogen, potassium, and calcium content of apple as influenced by nitrate: ammonium ratios in tree nutrition. J. Plant Nutr., 38(10):1619–1627. http://dx.doi.org/10.1080/01904167.2014.964364

    Article  Google Scholar 

  • Su, Y., Liu, J., Lu, Z., et al., 2014. Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation. Environ. Exp. Bot., 97(1):40–48. http://dx.doi.org/10.1016/j.envexpbot.2013.10.001

    Article  CAS  Google Scholar 

  • Tabatabaei, S.J., Yusefi, M., Hajiloo, J., 2008. Effects of shading and NO3:NH4 ratio on the yield, quality and N metabolism in strawberry. Sci. Hortic., 116(3):264–272. http://dx.doi.org/10.1016/j.scienta.2007.12.008

    Article  CAS  Google Scholar 

  • Tejada-Jiménez, M., Llamas, Á., Sanz-Luque, E., et al., 2007. A high-affinity molybdate transporter in eukaryotes. Proc. Natl. Acad. Sci. USA, 104(50):20126–20130. http://dx.doi.org/10.1073/pnas.0704646104

    Article  PubMed  PubMed Central  Google Scholar 

  • Tejada-Jiménez, M., Galván, A., Fernández, E., 2011. Algae and humans share a molybdate transporter. Proc. Natl. Acad. Sci. USA, 108(16):6420–6425. http://dx.doi.org/10.1073/pnas.1100700108

    Article  PubMed  PubMed Central  Google Scholar 

  • Tetyuk, O., Benning, U.F., Hoffmann-Benning, S., 2013. Collection and analysis of Arabidopsis phloem exudates using the EDTA-facilitated method. J. Vis. Exp., (80):e51111. http://dx.doi.org/10.3791/51111

    Google Scholar 

  • Ueno, D., Koyama, E., Yamaji, N., et al., 2011. Physiological, genetic, and molecular characterization of a high-Cdaccumulating rice cultivar. J. Exp. Bot., 62(7):2265–2272. http://dx.doi.org/10.1093/jxb/erq383

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z.Y., Tang, Y.L., Zhang, F.S., 1999. Effect of molybdenum on growth and nitrate reductase activity of winter wheat seedlings as influenced by temperature and nitrogen treatments. J. Plant Nutr., 22(2):387–395. http://dx.doi.org/10.1080/01904169909365636

    Article  CAS  Google Scholar 

  • Wu, Z., Zhao, X., Sun, X., et al., 2015. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus). Chemosphere, 119:1217–1223. http://dx.doi.org/10.1016/j.chemosphere.2014.09.099

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Shi, L., Xu, F., et al., 2009. Effects of B, Mo, Zn, and their interactions on seed yield of rapeseed (Brassica napus L.). Pedosphere, 19(1):53–59. http://dx.doi.org/10.1016/S1002-0160(08)60083-1

    Article  CAS  Google Scholar 

  • Ye, X., Guo, Y., Wang, G., et al., 2011. Investigation and analysis of soil molybdenum in the Tieguanyin tea plantations of Fujian Province. Plant Nutr. Fertiliz. Sci., 17(6):1372–1378 (in Chinese).

    CAS  Google Scholar 

  • Yin, Y., Wang, H., Liao, X., 2009. Analysis and strategy for 2009 rapeseed industry development in China. Chin. J. Oil Crop Sci., 31(2):259–262 (in Chinese).

    Google Scholar 

  • Yu, M., Hu, C., Wang, Y., 2002. Molybdenum efficiency in winter wheat cultivars as related to molybdenum uptake and distribution. Plant Soil, 245(2):287–293. http://dx.doi.org/10.1023/A:1020497728331

    Article  CAS  Google Scholar 

  • Zhao, Y.F., Wu, J.F., Shang, D., et al., 2015. Subcellular distribution and chemical forms of cadmium in the edible seaweed, Porphyra yezoensis. Food Chem., 168:48–54. http://dx.doi.org/10.1016/j.foodchem.2014.07.054

    Article  CAS  PubMed  Google Scholar 

  • Zheng, X.J., He, K., Kleist, T., et al., 2015. Anion channel SLAH3 functions in nitrate-dependent alleviation of ammonium toxicity in Arabidopsis. Plant Cell Eviron., 38(3):474–486. http://dx.doi.org/10.1111/pce.12389

    Article  CAS  Google Scholar 

  • Zhu, W., Hu, C., Tan, Q., et al., 2015. Effects of molybdenum application on yield and quality of Chinese cabbages under different ratios of NO3 --N to NH4 +-N. J. Huazhong Agric. Univ., 34(4):44–50 (in Chinese).

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Ron MCLAREN (Emeritus Professor of Environment Soil Science, Lincoln University, New Zealand) and Mr. Dawood Anser SAEED (College of Horticulture and Forestry Sciences, Huazhong Agricultural University, China) for critical reviewing and revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-xiao Hu.

Additional information

Project supported by the National Key Technologies R&D Program of China (No. 2014BAD14B02) and the “948” Project of the Ministry of Agriculture, China (Nos. 2016-X41 and 2015-Z34)

ORCID: Shi-yu QIN, http://orcid.org/0000-0003-2458-9625

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Sy., Sun, Xc., Hu, Cx. et al. Uptake, transport and distribution of molybdenum in two oilseed rape (Brassica napus L.) cultivars under different nitrate/ammonium ratios. J. Zhejiang Univ. Sci. B 18, 512–521 (2017). https://doi.org/10.1631/jzus.B1600249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600249

Key words

CLC number

关键词

Navigation