Skip to main content
Log in

Insights into the microbial diversity and community dynamics of Chinese traditional fermented foods from using high-throughput sequencing approaches

  • Review
  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Chinese traditional fermented foods have a very long history dating back thousands of years and have become an indispensable part of Chinese dietary culture. A plethora of research has been conducted to unravel the composition and dynamics of microbial consortia associated with Chinese traditional fermented foods using culturedependent as well as culture-independent methods, like different high-throughput sequencing (HTS) techniques. These HTS techniques enable us to understand the relationship between a food product and its microbes to a greater extent than ever before. Considering the importance of Chinese traditional fermented products, the objective of this paper is to review the diversity and dynamics of microbiota in Chinese traditional fermented foods revealed by HTS approaches.

中文概要

题目

高通量测序在探究中国传统发酵食品菌群多样性及动态变化中的应用

概要

中国传统发酵食品有着上千年的历史,已经成为 中国饮食文化中不可缺少的部分。微生物是发酵 食品的灵魂,为了探究传统发酵食品中的微生物 组成,多种依赖培养和非培养技术都已应用于不 同发酵体系的微生物菌相分析中。高通量测序技 术是近几年兴起的生物学技术,它极大地方便了 环境微生物多样性的研究,促进了我们对复杂微 生物环境的认知,其在发酵食品中的应用提升了 我们对发酵食品品质与微生物关系的认识水平。 本文综述了高通量测序技术在探究我国传统发 酵食品菌相中的应用,总结分析了不同发酵体系 中微生物的组成和动态变化。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abram, F., 2015. Systems-based approaches to unravel multispecies microbial community functioning. Comput. Struct. Biotechnol. J., 13: 24–32. http://dx.doi.org/10.1016/j.csbj.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  • Alain, K., Querellou, J., 2009. Cultivating the uncultured: limits, advances and future challenges. Extremophiles, 13(4): 583–594. http://dx.doi.org/10.1007/s00792-009-0261-3

    Article  PubMed  Google Scholar 

  • Amann, J., 1911. Die direkte zählung der wasserbakterien mittels des ultramikroskops. Centralbl. Bakteriol., 29: 381–384 (in German).

    Google Scholar 

  • Ayrapetyan, M., Williams, T.C., Oliver, J.D., 2015. Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol., 23(1): 7–13. http://dx.doi.org/10.1016/j.tim.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  • Azat, R., Liu, Y., Li, W., et al., 2016. Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 17(8): 597–609. http://dx.doi.org/10.1631/jzus.B1500250

    Article  CAS  Google Scholar 

  • Bokulich, N.A., Mills, D.A., 2012. Next-generation approaches to the microbial ecology of food fermentations. BMB Rep., 45(7): 377–389.

    Article  CAS  PubMed  Google Scholar 

  • Cao, Z.H., Gu, D.H., Lin, Q.Y., et al., 2011. Effect of pu-erh tea on body fat and lipid profiles in rats with diet-induced obesity. Phytother. Res., 25(2): 234–238. http://dx.doi.org/10.1002/ptr.3247

    CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention, 2001. Botulism outbreak associated with eating fermented food—Alaska, 2001. MMWR Morb. Mortal. Wkly. Rep., 50(32): 680–682.

    Google Scholar 

  • Chao, S.H., Huang, H.Y., Chang, C.H., et al., 2013. Microbial diversity analysis of fermented mung beans (Lu-Doh-Huang) by using pyrosequencing and culture methods. PLoS ONE, 8(5):e63816. http://doi.org/10.1371/journal.pone.0063816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vuyst, L., Schrijvers, V., Paramithiotis, S., et al., 2002. The biodiversity of lactic acid bacteria in greek traditional wheat sourdoughs is reflected in both composition and metabolite formation. Appl. Environ. Microbiol., 68(12): 6059–6069. http://dx.doi.org/10.1128/aem.68.12.6059-6069.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Vuyst, L., van Kerrebroeck, S., Harth, H., et al., 2014. Microbial ecology of sourdough fermentations: diverse or uniform? Food Microbiol., 37: 11–29. http://dx.doi.org/10.1016/j.fm.2013.06.002

    Article  PubMed  CAS  Google Scholar 

  • Du, M., Chen, J., Zhang, X., et al., 2007. Retention of virulence in a viable but nonculturable Edwardsiella tarda isolate. Appl. Environ. Microbiol., 73(4): 1349–1354. http://dx.doi.org/10.1128/AEM.02243-06

    Article  CAS  PubMed  Google Scholar 

  • Elizaquivel, P., Pérez-Cataluña, A., Yépez, A., et al., 2015. Pyrosequencing vs. culture-dependent approaches to analyze lactic acid bacteria associated to chicha, a traditional maize-based fermented beverage from Northwestern Argentina. Int. J. Food Microbiol., 198: 9–18. http://dx.doi.org/10.1016/j.ijfoodmicro.2014.12.027

    CAS  PubMed  Google Scholar 

  • Ercolini, D., de Filippis, F., la Storia, A., et al., 2012. “Remake” by high-throughput sequencing of the microbiota involved in the production of water buffalo mozzarella cheese. Appl. Environ. Microbiol., 78(22): 8142–8145. http://dx.doi.org/10.1128/AEM.02218-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ercolini, D., Pontonio, E., de Filippis, F., et al., 2013. Microbial ecology dynamics during rye and wheat sourdough preparation. Appl. Environ. Microbiol., 79(24): 7827–7836. http://dx.doi.org/10.1128/AEM.02955-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar-Zepeda, A., Sanchez-Flores, A., Baruch, M.Q., 2016. Metagenomic analysis of a Mexican ripened cheese reveals a unique complex microbiota. Food Microbiol., 57: 116–127. http://dx.doi.org/10.1016/j.fm.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  • Fakruddin, M., Mannan, K.S.B., Andrews, S., 2013. Viable but nonculturable bacteria: food safety and public health perspective. ISRN Microbiol., 2013(8113): 703813. http://dx.doi.org/10.1155/2013/703813

    PubMed  PubMed Central  Google Scholar 

  • Fang, R.S., Dong, Y.C., Chen, F., et al., 2015. Bacterial diversity analysis during the fermentation processing of traditional Chinese yellow rice wine revealed by 16S rDNA 454 pyrosequencing. J. Food Sci., 80(10):M2265–M2271. http://dx.doi.org/10.1111/1750-3841.13018

    Article  CAS  PubMed  Google Scholar 

  • Gao, J., Gu, F., He, J., et al., 2013. Metagenome analysis of bacterial diversity in Tibetan kefir grains. Eur. Food Res. Technol., 236(3): 549–556. http://dx.doi.org/10.1007/s00217-013-1912-2

    Article  CAS  Google Scholar 

  • Gobbetti, M., Corsetti, A., 1997. Lactobacillus sanfrancisco a key sourdough lactic acid bacterium: a review. Food Microbiol., 14(2): 175–187. http://dx.doi.org/10.1006/fmic.1996.0083

    Article  CAS  Google Scholar 

  • Guan, Z.B., Zhang, Z.H., Cao, Y., et al., 2012. Analysis and comparison of bacterial communities in two types of ‘wheat Qu’, the starter culture of Shaoxing rice wine, using nested PCR-DGGE. J. Inst. Brew., 118(1): 127–132. http://dx.doi.org/10.1002/jib.4

    Article  CAS  Google Scholar 

  • Hammes, W.P., Gänzle, M.G., 1997. Sourdough breads and related products. In: Wood, B.J.B. (Ed.), Microbiology of Fermented Foods. Springer US, p.199–216. http://dx.doi.org/10.1007/978-1-4613-0309-1_8

    Google Scholar 

  • Hayashi, K., 1991. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl., 1):34–38.

    Article  CAS  PubMed  Google Scholar 

  • Hou, Y., Shao, W., Xiao, R., et al., 2009. Pu-erh tea aqueous extracts lower atherosclerotic risk factors in a rat hyperlipidemia model. Exp. Gerontol., 44(6–7): 434–439. http://dx.doi.org/10.1016/j.exger.2009.03.007

    Article  PubMed  Google Scholar 

  • Hu, H., Xu, Y., Lu, H.P., et al., 2015. Evaluation of yeasts from Tibetan fermented products as agents for biocontrol of blue mold of Nashi pear fruits. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(4): 275–285. http://dx.doi.org/10.1631/jzus.B1400162

    Article  CAS  Google Scholar 

  • Hugenholtz, P., 2002. Exploring prokaryotic diversity in the genomic era. Genome Biol., 3:reviews0003.1. http://dx.doi.org/10.1186/gb-2002-3-2-reviews0003

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang, S., Lu, J., Li, H., 2012. Comparative metatranscriptomic analysis of microbial communities at two different stages during the pile-fermentation of Puer tea. J. Beijing Univ. Chem. Technol. (Nat. Sci. Ed.), 39(6): 84–89 (in Chinese).

    Google Scholar 

  • Jung, J.Y., Lee, S.H., Kim, J.M., et al., 2011. Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl. Environ. Microbiol., 77(7): 2264–2274. http://dx.doi.org/10.1128/AEM.02157-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, J.Y., Lee, S.H., Jin, H.M., et al., 2013. Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation. Int. J. Food Microbiol., 163(2–3): 171–179. http://dx.doi.org/10.1016/j.ijfoodmicro.2013.02.022

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein, T., Lewis, K., Epstein, S.S., 2002. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science, 296(5570): 1127–1129. http://dx.doi.org/10.1126/science.1070633

    Article  CAS  PubMed  Google Scholar 

  • Kergourlay, G., Taminiau, B., Daube, G., et al., 2015. Metagenomic insights into the dynamics of microbial communities in food. Int. J. Food Microbiol., 213(20): 31–39. http://dx.doi.org/10.1016/j.ijfoodmicro.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  • Kline, L., Sugihara, T., 1971. Microorganisms of the San Francisco sour dough bread process II.Isolation and characterization of undescribed bacterial species responsible for the souring activity. Appl. Environ. Microbiol., 21(3): 459–465.

    CAS  Google Scholar 

  • Ktenioudaki, A., Alvarez-Jubete, L., Smyth, T.J., et al., 2015. Application of bioprocessing techniques (sourdough fermentation and technological aids) for brewer’s spent grain breads. Food Res. Int., 73: 107–116. http://dx.doi.org/10.1016/j.foodres.2015.03.008

    Article  CAS  Google Scholar 

  • Lewis, K., Epstein, S., D'Onofrio, A., et al., 2010. Uncultured microorganisms as a source of secondary metabolites. J. Antibiotics, 63(8): 468–476. http://dx.doi.org/10.1038/ja.2010.87

    Article  CAS  Google Scholar 

  • Li, P., Liang, H., Lin, W.T., et al., 2015. Microbiota dynamics associated with environmental conditions and potential roles of cellulolytic communities in traditional Chinese cereal starter solid-state fermentation. Appl. Environ. Microbiol., 81(15): 5144–5156. http://dx.doi.org/10.1128/aem.01325-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X.R., Ma, E.B., Yan, L.Z., et al., 2011. Bacterial and fungal diversity in the traditional Chinese liquor fermentation process. Int. J. Food Microbiol., 146(1): 31–37. http://dx.doi.org/10.1016/j.ijfoodmicro.2011.01.030

    Article  CAS  PubMed  Google Scholar 

  • Li, X.R., Ma, E.B., Yan, L.Z., et al., 2013. Bacterial and fungal diversity in the starter production process of Fen liquor, a traditional Chinese liquor. J. Microbiol., 51(4): 430–438. http://dx.doi.org/10.1007/s12275-013-2640-9

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Li, H., Deng, C., et al., 2014. Effect of Lactobacillus plantarum DM616 on dough fermentation and Chinese steamed bread quality. J. Food Process Pres., 39(1): 30–37. http://dx.doi.org/10.1111/jfpp.12205

    Article  CAS  Google Scholar 

  • Ling, Z., Kong, J., Jia, P., et al., 2010. Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microb. Ecol., 60(3): 677–690. http://dx.doi.org/10.1007/s00248-010-9712-8

    Article  CAS  PubMed  Google Scholar 

  • Liu, S.N., Han, Y., Zhou, Z.J., 2011. Lactic acid bacteria in traditional fermented Chinese foods. Food Res. Int., 44(3): 643–651. http://dx.doi.org/10.1016/j.foodres.2010.12.034

    Article  CAS  Google Scholar 

  • Liu, S.P., Mao, J., Liu, Y.Y., et al., 2015. Bacterial succession and the dynamics of volatile compounds during the fermentation of Chinese rice wine from Shaoxing region. World J. Microbiol. Biotechnol., 31(12): 1907–1921. http://dx.doi.org/10.1007/s11274-015-1931-1

    Article  CAS  PubMed  Google Scholar 

  • Liu, T., Li, Y., Chen, J., et al., 2016. Prevalence and diversity of lactic acid bacteria in Chinese traditional sourdough revealed by culture dependent and pyrosequencing approaches. LWT-Food Sci. Technol., 68: 91–97. http://dx.doi.org/10.1016/j.lwt.2015.12.025

    Article  CAS  Google Scholar 

  • Liu, W., Zheng, Y., Kwok, L.Y., et al., 2015. High-throughput sequencing for the detection of the bacterial and fungal diversity in Mongolian naturally fermented cow’s milk in Russia. BMC Microbiol., 15:45. http://dx.doi.org/10.1186/s12866-015-0385-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyu, C., Chen, C., Ge, F., et al., 2013. A preliminary metagenomic study of puer tea during pile fermentation. J. Sci. Food Agric., 93(13): 3165–3174. http://dx.doi.org/10.1002/jsfa.6149

    Article  CAS  PubMed  Google Scholar 

  • Mardis, E.R., 2008. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 9: 387–402. http://dx.doi.org/10.1146/annurev.genom.9.081307.164359

    Article  CAS  PubMed  Google Scholar 

  • Marsh, A.J., O'Sullivan, O., Hill, C., et al., 2013. Sequencingbased analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. PLoS ONE, 8(7):e69371. http://dx.doi.org/10.1371/journal.pone.0069371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh, T.L., 1999. Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol., 2(3): 323–327. http://dx.doi.org/10.1016/S1369-5274(99)80056-3

    Article  CAS  PubMed  Google Scholar 

  • Mayo, B., Rachid, C.T., Alegría, Á., et al., 2014. Impact of next generation sequencing techniques in food microbiology. Curr. Genomics, 15(4): 293–309. http://dx.doi.org/10.2174/1389202915666140616233211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muyzer, G., 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol., 2(3): 317–322. http://dx.doi.org/10.1016/S1369-5274(99)80055-1

    Article  CAS  PubMed  Google Scholar 

  • Nalbantoglu, U., Cakar, A., Dogan, H., et al., 2014. Metagenomic analysis of the microbial community in kefir grains. Food Microbiol., 41: 42–51. http://dx.doi.org/10.1016/j.fm.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  • Nie, Z., Zheng, Y., Wang, M., et al., 2013. Exploring microbial succession and diversity during solid-state fermentation of Tianjin duliu mature vinegar. Bioresour. Technol., 148: 325–333. http://dx.doi.org/10.1016/j.biortech.2013.08.152

    Article  CAS  PubMed  Google Scholar 

  • Oliver, J.D., 2005. The viable but nonculturable state in bacteria. J. Microbiol., 43(1): 93–100.

    PubMed  Google Scholar 

  • Park, E.J., Kim, K.H., Abell, G.C., et al., 2011. Metagenomic analysis of the viral communities in fermented foods. Appl. Environ. Microb., 77(4): 1284–1291. http://dx.doi.org/10.1128/AEM.01859-10

    Article  CAS  Google Scholar 

  • Peng, Q., Yang, Y., Guo, Y., et al., 2015. Analysis of bacterial diversity during acetic acid fermentation of Tianjin duliu aged vinegar by 454 pyrosequencing. Curr. Microbiol., 71(2): 195–203. http://dx.doi.org/10.1007/s00284-015-0823-9

    Article  CAS  PubMed  Google Scholar 

  • Piao, H., Hawley, E., Kopf, S., et al., 2015. Insights into the “uncultivable” microorganisms in pure culture in a simulated natural environment. Science, 296(5570): 1127–1129. http://dx.doi.org/10.1126/science.1070633

    Google Scholar 

  • Kergourlay, G., Taminiau, B., Daube, G., et al., 2015. Metagenomic insights into the dynamics of microbial communities in food. Int. J. Food Microbiol., 213(20): 31–39. http://dx.doi.org/10.1016/j.ijfoodmicro.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  • Kline, L., Sugihara, T., 1971. Microorganisms of the San Francisco sour dough bread process II. Isolation and characterization of undescribed bacterial species responsible for the souring activity. Appl. Environ. Microbiol., 21(3): 459–465.

    CAS  Google Scholar 

  • Ktenioudaki, A., Alvarez-Jubete, L., Smyth, T.J., et al., 2015. Application of bioprocessing techniques (sourdough fermentation and technological aids) for brewer’s spent grain breads. Food Res. Int., 73: 107–116. http://dx.doi.org/10.1016/j.foodres.2015.03.008

    Article  CAS  Google Scholar 

  • Lewis, K., Epstein, S., D'Onofrio, A., et al., 2010. Uncultured microorganisms as a source of secondary metabolites. J. Antibiotics, 63(8): 468–476. http://dx.doi.org/10.1038/ja.2010.87

    Article  CAS  Google Scholar 

  • Li, P., Liang, H., Lin, W.T., et al., 2015. Microbiota dynamics associated with environmental conditions and potential roles of cellulolytic communities in traditional Chinese cereal starter solid-state fermentation. Appl. Environ. Microbiol., 81(15): 5144–5156. http://dx.doi.org/10.1128/aem.01325-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X.R., Ma, E.B., Yan, L.Z., et al., 2011. Bacterial and fungal diversity in the traditional Chinese liquor fermentation process. Int. J. Food Microbiol., 146(1): 31–37. http://dx.doi.org/10.1016/j.ijfoodmicro.2011.01.030

    Article  CAS  PubMed  Google Scholar 

  • Li, X.R., Ma, E.B., Yan, L.Z., et al., 2013. Bacterial and fungal diversity in the starter production process of Fen liquor, a traditional Chinese liquor. J. Microbiol., 51(4): 430–438. http://dx.doi.org/10.1007/s12275-013-2640-9

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Li, H., Deng, C., et al., 2014. Effect of Lactobacillus plantarum DM616 on dough fermentation and Chinese steamed bread quality. J. Food Process Pres., 39(1): 30–37. http://dx.doi.org/10.1111/jfpp.12205

    Article  CAS  Google Scholar 

  • Ling, Z., Kong, J., Jia, P., et al., 2010. Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microb. Ecol., 60(3): 677–690. http://dx.doi.org/10.1007/s00248-010-9712-8

    Article  CAS  PubMed  Google Scholar 

  • Liu, S.N., Han, Y., Zhou, Z.J., 2011. Lactic acid bacteria in traditional fermented Chinese foods. Food Res. Int., 44(3): 643–651. http://dx.doi.org/10.1016/j.foodres.2010.12.034

    Article  CAS  Google Scholar 

  • Liu, S.P., Mao, J., Liu, Y.Y., et al., 2015. Bacterial succession and the dynamics of volatile compounds during the fermentation of Chinese rice wine from Shaoxing region. World J. Microbiol. Biotechnol., 31(12): 1907–1921. http://dx.doi.org/10.1007/s11274-015-1931-1

    Article  CAS  PubMed  Google Scholar 

  • Liu, T., Li, Y., Chen, J., et al., 2016. Prevalence and diversity of lactic acid bacteria in Chinese traditional sourdough revealed by culture dependent and pyrosequencing approaches. LWT-Food Sci. Technol., 68: 91–97. http://dx.doi.org/10.1016/j.lwt.2015.12.025

    Article  CAS  Google Scholar 

  • Liu, W., Zheng, Y., Kwok, L.Y., et al., 2015. High-throughput sequencing for the detection of the bacterial and fungal diversity in Mongolian naturally fermented cow’s milk in Russia. BMC Microbiol., 15:45. http://dx.doi.org/10.1186/s12866-015-0385-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyu, C., Chen, C., Ge, F., et al., 2013. A preliminary metagenomic study of puer tea during pile fermentation. J. Sci. Food Agric., 93(13): 3165–3174. http://dx.doi.org/10.1002/jsfa.6149

    Article  CAS  PubMed  Google Scholar 

  • Mardis, E.R., 2008. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 9: 387–402. http://dx.doi.org/10.1146/annurev.genom.9.081307.164359

    Article  CAS  PubMed  Google Scholar 

  • Marsh, A.J., O'Sullivan, O., Hill, C., et al., 2013. Sequencingbased analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. PLoS ONE, 8(7):e69371. http://dx.doi.org/10.1371/journal.pone.0069371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh, T.L., 1999. Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol., 2(3): 323–327. http://dx.doi.org/10.1016/S1369-5274(99)80056-3

    Article  CAS  PubMed  Google Scholar 

  • Mayo, B., Rachid, C.T., Alegría, Á., et al., 2014. Impact of next generation sequencing techniques in food microbiology. Curr. Genomics, 15(4): 293–309. http://dx.doi.org/10.2174/1389202915666140616233211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muyzer, G., 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol., 2(3): 317–322. http://dx.doi.org/10.1016/S1369-5274(99)80055-1

    Article  CAS  PubMed  Google Scholar 

  • Nalbantoglu, U., Cakar, A., Dogan, H., et al., 2014. Metagenomic analysis of the microbial community in kefir grains. Food Microbiol., 41: 42–51. http://dx.doi.org/10.1016/j.fm.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  • Nie, Z., Zheng, Y., Wang, M., et al., 2013. Exploring microbial succession and diversity during solid-state fermentation of Tianjin duliu mature vinegar. Bioresour. Technol., 148: 325–333. http://dx.doi.org/10.1016/j.biortech.2013.08.152

    Article  CAS  PubMed  Google Scholar 

  • Oliver, J.D., 2005. The viable but nonculturable state in bacteria. J. Microbiol., 43(1): 93–100.

    PubMed  Google Scholar 

  • Park, E.J., Kim, K.H., Abell, G.C., et al., 2011. Metagenomic analysis of the viral communities in fermented foods. Appl. Environ. Microb., 77(4): 1284–1291. http://dx.doi.org/10.1128/AEM.01859-10

    Article  CAS  Google Scholar 

  • Peng, Q., Yang, Y., Guo, Y., et al., 2015. Analysis of bacterial diversity during acetic acid fermentation of Tianjin duliu aged vinegar by 454 pyrosequencing. Curr. Microbiol., 71(2): 195–203. http://dx.doi.org/10.1007/s00284-015-0823-9

    Article  CAS  PubMed  Google Scholar 

  • Piao, H., Hawley, E., Kopf, S., et al., 2015. Insights into the bacterial community and its temporal succession during the fermentation of wine grapes. Front. Microbiol., 6:809. http://dx.doi.org/10.3389/fmicb.2015.00809

    Article  PubMed  PubMed Central  Google Scholar 

  • Prakash, O., Shouche, Y., Jangid, K., et al., 2013. Microbial cultivation and the role of microbial resource centers in the omics era. Appl. Microbiol. Biotechnol., 97(1): 51–62. http://dx.doi.org/10.1007/s00253-012-4533-y

    Article  CAS  PubMed  Google Scholar 

  • Quigley, L., O'Sullivan, O., Beresford, T.P., et al., 2012. Highthroughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses. Appl. Environ. Microbiol., 78(16): 5717–5723. http://dx.doi.org/10.1128/AEM.00918-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riesenfeld, C.S., Schloss, P.D., Handelsman, J., 2004. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet., 38: 525–552. http://dx.doi.org/10.1146/annurev.genet.38.072902.091216

    Article  CAS  PubMed  Google Scholar 

  • Shaffer, N., Wainwright, R.B., Middaugh, J.P., et al., 1990. Botulism among alaska natives. The role of changing food preparation and consumption practices.

  • West J. Med., 153(4): 390–393.

  • Shi, G., 1999. Talk about Chinese vinegar. China Brew., 6: 39–40 (in Chinese).

    Google Scholar 

  • Simonen, M., Palva, I., 1993. Protein secretion in Bacillus species. Microbiol. Mol. Biol. Rev., 57(1): 109–137.

    CAS  Google Scholar 

  • Smit, G., Smit, B.A., Engels, W.J., 2005. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev., 29(3): 591–610. http://dx.doi.org/10.1016/j.femsre.2005.04.002

    Article  CAS  PubMed  Google Scholar 

  • Stewart, E.J., 2012. Growing unculturable bacteria. J. Bacteriol., 194(16): 4151–4160. http://dx.doi.org/10.1128/JB.00345-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Z., Liu, W., Bao, Q., et al., 2014. Investigation of bacterial and fungal diversity in tarag using highthroughput sequencing. J. Dairy Sci., 97(10): 6085–6096. http://dx.doi.org/10.3168/jds.2014-8360

    Article  CAS  PubMed  Google Scholar 

  • Tesfaye, W., Morales, M.L., Garcí a-Parrilla, M., et al., 2002. Wine vinegar: technology, authenticity and quality evaluation. Trends Food Sci. Technol., 13(1): 12–21. http://dx.doi.org/10.1016/S0924-2244(02)00023-7

    Article  CAS  Google Scholar 

  • Tian, J., Zhu, Z., Wu, B., et al., 2013. Bacterial and fungal communities in Pu’er tea samples of different ages. J. Food Sci., 78(8):M1249–M1256. http://dx.doi.org/10.1111/1750-3841.12218

    Article  CAS  PubMed  Google Scholar 

  • Venter, J.C., Remington, K., Heidelberg, J.F., et al., 2004. Environmental genome shotgun sequencing of the Sargasso sea. Science, 304(5667): 66–74. http://dx.doi.org/10.1126/science.1093857

    Article  CAS  PubMed  Google Scholar 

  • Wang, C.D., Chen, Q., Wang, Q., et al., 2014. Long-term batch brewing accumulates adaptive microbes, which comprehensively produce more flavorful Chinese liquors. Food Res. Int., 62: 894–901. http://dx.doi.org/10.1016/j.foodres.2014.05.017

    Article  CAS  Google Scholar 

  • Wang, P., Mao, J., Meng, X., et al., 2014. Changes in flavour characteristics and bacterial diversity during the traditional fermentation of Chinese rice wines from Shaoxing region. Food Control, 44: 58–63. http://dx.doi.org/10.1016/j.foodcont.2014.03.018

    Article  CAS  Google Scholar 

  • Wang, Z.M., Lu, Z.M., Yu, Y.J., et al., 2015. Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar. Food Microbiol., 50: 64–69. http://dx.doi.org/10.1016/j.fm.2015.03.012

    Article  CAS  PubMed  Google Scholar 

  • Weckx, S., van der Meulen, R., Allemeersch, J., et al., 2010. Community dynamics of bacteria in sourdough fermentations as revealed by their metatranscriptome. Appl. Environ. Microbiol., 76(16): 5402–5408. http://dx.doi.org/10.1128/AEM.00570-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weckx, S., Allemeersch, J., van der Meulen, R., et al., 2011. Metatranscriptome analysis for insight into wholeecosystem gene expression during spontaneous wheat and spelt sourdough fermentations. Appl. Environ. Microbiol., 77(2): 618–626. http://dx.doi.org/10.1128/AEM.02028-10

    Article  CAS  PubMed  Google Scholar 

  • Wei, C.L., Chao, S.H., Tsai, W.B., et al., 2013. Analysis of bacterial diversity during the fermentation of inyu, a high-temperature fermented soy sauce, using nested PCR-denaturing gradient gel electrophoresis and the plate count method. Food Microbiol., 33(2): 252–261. http://dx.doi.org/10.1016/j.fm.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  • Winterberg, H., 1898. Zur methodik der bakterienzählung. Zeitschr. f. Hygiene, 29(1): 75–93 (in German). http://dx.doi.org/10.1007/BF02217377

    Google Scholar 

  • Xie, G., Wang, L., Gao, Q., et al., 2013. Microbial community structure in fermentation process of Shaoxing rice wine by illumina-based metagenomic sequencing. J. Sci. Food Agric., 93(12): 3121–3125. http://dx.doi.org/10.1002/jsfa.6058

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., Liu, W., Gesudu, Q., et al., 2015. Assessment of the bacterial and fungal diversity in home-made yoghurts of Xinjiang, China by pyrosequencing. J. Sci. Food Agric., 95(10): 2007–2015. http://dx.doi.org/10.1002/jsfa.6912

    Article  CAS  PubMed  Google Scholar 

  • Xu, W., Huang, Z., Zhang, X., et al., 2011. Monitoring the microbial community during solid-state acetic acid fermentation of Zhenjiang aromatic vinegar. Food Microbiol., 28(6): 1175–1181. http://dx.doi.org/10.1016/j.fm.2011.03.011

    Article  CAS  PubMed  Google Scholar 

  • Yang, X.P., Luo, J.F., Xin, L., et al., 2013. Microbial community structure and change during solid fermentation of Pu-erh tea. Food Sci., 34(19): 142–147 (in Chinese).

    CAS  Google Scholar 

  • Zhang, G., He, G., 2013. Predominant bacteria diversity in Chinese traditional sourdough. J. Food Sci., 78(8): M1218–M1223. http://dx.doi.org/10.1111/1750-3841.12193

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G., Sadiq, F.A., Zhu, L., et al., 2015. Investigation of microbial communities of Chinese sourdoughs using culture-dependent and DGGE approaches. J. Food Sci., 80(11):M2535–M2542. http://dx.doi.org/10.1111/1750-3841.13093

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G.H., Wu, T., Sadiq, F.A., et al., 2016. A study revealing the key aroma compounds of steamed bread made by Chinese traditional sourdough. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 17(10): 787–797. http://dx.doi.org/10.1631/jzus.B1600130

    Article  CAS  Google Scholar 

  • Zhang, J.C., Liu, W.J., Sun, Z.H., et al., 2011. Diversity of lactic acid bacteria and yeasts in traditional sourdoughs collected from western region in Inner Mongolia of China. Food Control, 22(5): 767–774. http://dx.doi.org/10.1016/j.foodcont.2010.11.012

    Article  CAS  Google Scholar 

  • Zhang, X., Zhao, J., Du, X., 2014. Barcoded pyrosequencing analysis of the bacterial community of Daqu for light-flavour Chinese liquor. Lett. Appl. Microbiol., 58(6): 549–555. http://dx.doi.org/10.1111/lam.12225

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Guan, Z., Liang, X., et al., 2012. Establishment of PCR-DGGE for analysing the bacterial community of Shaoxing rice wine wheat Qu. Sci. Technol. Food Ind., 33(14): 206–209, 213 (in Chinese).

    Google Scholar 

  • Zhao, M., Zhang, D.L., Su, X.Q., et al., 2015. An integrated metagenomics/metaproteomics investigation of the microbial communities and enzymes in solid-state fermentation of Pu-erh tea. Sci. Rep., 5:10117. http://dx.doi.org/10.1038/srep10117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, Q., Lin, B., Wang, Y., et al., 2015. Proteomic and high-throughput analysis of protein expression and microbial diversity of microbes from 30-and 300-year pit muds of Chinese Luzhou-flavor liquor. Food Res. Int., 75: 305–314. http://dx.doi.org/10.1016/j.foodres.2015.06.029

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-qing He.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 31371826 and 31571808) and the China Postdoctoral Science Foundation Funded Project (No. 2016M592002)

ORCID: Guo-qing HE, http://orcid.org/0000-0002-1177-8016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Gq., Liu, Tj., Sadiq, F.A. et al. Insights into the microbial diversity and community dynamics of Chinese traditional fermented foods from using high-throughput sequencing approaches. J. Zhejiang Univ. Sci. B 18, 289–302 (2017). https://doi.org/10.1631/jzus.B1600148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600148

Key words

CLC number

关键词

Navigation