Skip to main content
Log in

Filtration of micro-particles within multi-fiber arrays by adhesive DEM-CFD simulation

离散元-计算流体动力学耦合方法模拟多纤维阵列过滤微米级颗粒

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

A 3D multi-time scale discrete element method-computational fluid dynamic (DEM-CFD) coupling approach was applied to investigate the filtration of micron-sized particles by different types of fiber arrays. Both the pressure drop and the filtration efficiency were examined to indicate the filtration performance of the fiber arrays. Fibers that were uniformly arrayed in a parallel or staggered manner were compared. Results showed that the staggered array showed a better performance than the parallel array in terms of both pressure drop and filtration efficiency. Further, we compared the performance of different staggered arrays, i.e. a regular case, one densified in the front layers and another densified in the back layers. The front densified array was found to enter the clogging and cake filtration stage in the shortest time, leading to the highest filtration efficiency, but the highest pressure drop. The back densified array still achieved a much higher filtration efficiency, despite a much lower pressure drop comparable to that of the regular array. The results suggest that the two kinds of densified arrays may be suited for different purposes, e.g. baghouse filters or breathing masks.

摘要

目 的

微米细颗粒在不同纤维排列所组成的滤料中的沉 积和穿透行为仍然缺少研究。本文通过离散元-计算流体动力学耦合 (DEM-CFD) 双向耦合方法, 研究前加密、后加密以及规则错列阵列纤维 在过滤压降和捕捉效率方面的特性。

创新点

1. 使用DEM-CFD流固双向耦合方法, 建立了适用于多纤维阵列过滤微米颗粒的数值模拟方法; 2. 得到并对比了不同排列形式的过滤压降和捕捉效率。

方 法

1. 通过数值模拟, 得到顺列和错列排布纤维的过滤压降及捕捉效率 (图2和3、表2); 2. 通过数值模拟, 分析前加密、后加密错列排布纤维与规则错列排列纤维的优劣 (图6 和7), 并得出颗粒 在滤料中的沉积分布 (图8)

结 论

1. 错列纤维比顺列纤维提前进入堵塞期, 在沉积相同颗粒数时具有更低的压降, 且在清洁滤料期 具有更高的捕捉效率; 2. 前加密错列排布比后加密错列排布更早进入堵塞期, 且总体穿透颗粒数 量更少; 3. 前加密错列排布适用于工业滤料, 而 后加密错列排布适用于一次性个人防护用品。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benyahia S, Syamlal M, O’Brien TJ, 2006. Extension of Hill–Koch–Ladd drag correlation over all ranges of Reynolds number and solids volume fraction. Powder Technology, 162(2):166–174. https://doi.org/10.1016/j.powtec.2005.12.014

    Article  Google Scholar 

  • Chen S, Li S, Yang M, 2015. Sticking/Rebound criterion for collisions of small adhesive particles: effects of impact parameter and particle size. Powder Technology, 274: 431–440. https://doi.org/10.1016/j.powtec.2015.01.051

    Article  Google Scholar 

  • Chen S, Liu W, Li S, 2016a. Effect of long-range electrostatic repulsion on pore clogging during microfiltration. Physical Review E, 94(6):063108. https://doi.org/10.1103/PhysRevE.94.063108

    Article  Google Scholar 

  • Chen S, Li S, Liu W, et al., 2016b. Effect of long-range repulsive coulomb interactions on packing structure of adhesive particles. Soft Matter, 12(6):1836–1846. https://doi.org/10.1039/C5SM02403J

    Article  Google Scholar 

  • Dittler A, Gutmann B, Lichtenberger R, et al., 1998. Optical in situ measurement of dust cake thickness distributions on rigid filter media for gas cleaning. Powder Technology, 99(2):177–184. https://doi.org/10.1016/S0032-5910(98)00102-8

    Article  Google Scholar 

  • Dunnett SJ, Clement CF, 2006. A numerical study of the effects of loading from diffusive deposition on the efficiency of fibrous filters. Journal of Aerosol Science, 37(9):1116–1139. https://doi.org/10.1016/j.jaerosci.2005.08.001

    Article  Google Scholar 

  • Dunnett SJ, Clement CF, 2012. Numerical investigation into the loading behaviour of filters operating in the diffusional and interception deposition regimes. Journal of Aerosol Science, 53:85–99. https://doi.org/10.1016/j.jaerosci.2012.06.008

    Article  Google Scholar 

  • Flagan CR, Seinfel HJ, 1988. Fundamentals of Air Pollution Engineering. Prentice Hall, Englewood Cliffs, New Jersey, USA, p.433–455.

    Google Scholar 

  • Garg R, Galvin J, Li T, et al., 2012. Open-source MFIX-DEM software for gas–solids flows: part I—verification studies. Powder Technology, 220:122–137. https://doi.org/10.1016/j.powtec.2011.09.019

    Article  Google Scholar 

  • Hosseini SA, Tafreshi HV, 2010. 3-D simulation of particle filtration in electrospun nanofibrous filters. Powder Technology, 201(2):153–160. https://doi.org/10.1016/j.powtec.2010.03.020

    Article  Google Scholar 

  • Johnson KL, Kendall K, Roberts AD, 1971. Surface energy and the contact of elastic solids. Proceedings of Royal Society London A: Mathematical, Physical and Engineering Sciences, 324(1558):301–313. https://doi.org/10.1098/rspa.1971.0141

    Article  Google Scholar 

  • Kanaoka C, Emi H, Myojo T, 1980. Simulation of the growing process of a particle dendrite and evaluation of a single fiber collection efficiency with dust load. Journal of Aerosol Science, 11(4):383–385. https://doi.org/10.1016/0021-8502(80)90046-4

    Article  Google Scholar 

  • Karadimos A, Ocone R, 2003. The effect of the flow field recalculation on fibrous filter loading: a numerical simulation. Powder Technology, 137(3):109–119. https://doi.org/10.1016/S0032-5910(03)00132-3

    Article  Google Scholar 

  • Kasper G, Schollmeier S, Meyer J, et al., 2009. The collection efficiency of a particle-loaded single filter fiber. Journal of Aerosol Science, 40(12):993–1009. https://doi.org/10.1016/j.jaerosci.2009.09.005

    Article  Google Scholar 

  • Kasper G, Schollmeier S, Meyer J, 2010. Structure and density of deposits formed on filter fibers by inertial particle deposition and bounce. Journal of Aerosol Science, 41(12):1167–1182. https://doi.org/10.1016/j.jaerosci.2010.08.006

    Article  Google Scholar 

  • Kolakaluri R, Murphy E, Subramaniam S, et al., 2015. Filtration model for polydisperse aerosols in gas-solid flow using granule-resolved direct numerical simulation. AIChE Journal, 61(11):3594–3606. https://doi.org/10.1002/aic.14901

    Article  Google Scholar 

  • LaMarche CQ, Miller AW, Liu P, et al., 2016. Linking microscale predictions of capillary forces to macro-scale fluidization experiments in humid environments. AIChE Journal, 62(10):3585–3597. https://doi.org/10.1002/aic.15281

    Article  Google Scholar 

  • Li SQ, Marshall JS, 2007. Discrete element simulation of micro-particle deposition on a cylindrical fiber in an array. Journal of Aerosol Science, 38(10):1031–1046. https://doi.org/10.1016/j.jaerosci.2007.08.004

    Article  Google Scholar 

  • Li SQ, Marshall JS, Liu GQ, et al., 2011. Adhesive particulate flow: the discrete-element method and its application in energy and environmental engineering. Progress in Energy and Combustion Science, 37(6):633–668. https://doi.org/10.1016/j.pecs.2011.02.001

    Article  Google Scholar 

  • Li T, Garg R, Galvin J, et al., 2012. Open-source MFIX-DEM software for gas-solids flows: part II—validation studies. Powder Technology, 220:138–150. https://doi.org/10.1016/j.powtec.2011.09.020

    Article  Google Scholar 

  • Liu D, van Wachem BGM, Mudde RF, et al., 2016. An adhesive CFD-DEM model for simulating nanoparticle agglomerate fluidization. AIChE Journal, 62(7):2259–2270. https://doi.org/10.1002/aic.15219

    Article  Google Scholar 

  • Liu W, Li S, Baule A, et al., 2015. Adhesive loose packings of small dry particles. Soft Matter, 11(32):6492–6498. https://doi.org/10.1039/C5SM01169H

    Article  Google Scholar 

  • Liu ZG, Wang PK, 1997. Pressure drop and interception efficiency of multifiber filters. Aerosol Science and Technology, 26(4):313–325. https://doi.org/10.1080/02786829708965433

    Article  Google Scholar 

  • Luding S, 2008. Cohesive, frictional powders: contact models for tension. Granular Matter, 10(4):235–246. https://doi.org/10.1007/s10035-008-0099-x

    Article  MathSciNet  MATH  Google Scholar 

  • Marshall JS, 2009. Discrete-element modeling of particulate aerosol flows. Journal of Computational Physics, 228(5): 1541–1561. https://doi.org/10.1016/j.jcp.2008.10.035

    Article  MATH  Google Scholar 

  • Marshall JS, Li S, 2014. Adhesive Particle Flow. Cambridge University Press, New York, USA, p.86–99.

    Book  Google Scholar 

  • Maze B, Vahedi Tafreshi H, Wang Q, et al., 2007. A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures. Journal of Aerosol Science, 38(5):550–571. https://doi.org/10.1016/j.jaerosci.2007.03.008

    Article  Google Scholar 

  • Myojo T, Kanaoka C, Emi H, 1984. Experimental observation of collection efficiency of a dust-loaded fiber. Journal of Aerosol Science, 15(4):483–489. https://doi.org/10.1016/0021-8502(84)90044-2

    Article  Google Scholar 

  • Novick VJ, Higgins PJ, Dierkschiede B, et al., 1990. Efficiency and mass loading characteristics of a typical HEPA filter media material. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference, 2:782–798.

    Google Scholar 

  • Roussel N, Nguyen TLH, Coussot P, 2007. General probabilistic approach to the filtration process. Physical Review Letters, 98(11):114502. https://doi.org/10.1103/PhysRevLett.98.114502

    Article  Google Scholar 

  • Schiller S, Schmid H, 2015. Highly efficient filtration of ultrafine dust in baghouse filters using precoat materials. Powder Technology, 279:95–105.

    Article  Google Scholar 

  • Tamadondar MR, Rasmuson A, Thalberg K, et al., 2017. Numerical modeling of adhesive particle mixing. AIChE Journal, 63(7):2599–2609. https://doi.org/10.1002/aic.15654

    Article  Google Scholar 

  • Thomas D, Contal P, Renaudin V, et al., 1999. Modelling pressure drop in HEPA filters during dynamic filtration. Journal of Aerosol Science, 30(2):235–246. https://doi.org/10.1016/S0021-8502(98)00036-6

    Article  Google Scholar 

  • Thomas D, Penicot P, Contal P, et al., 2001. Clogging of fibrous filters by solid aerosol particles: experimental and modelling study. Chemical Engineering Science, 56(11): 3549–3561. https://doi.org/10.1016/S0009-2509(01)00041-0

    Article  Google Scholar 

  • Tien C, Teoh SK, Tan RBH, 2001. Cake filtration analysis— the effect of the relationship between the pore liquid pressure and the cake compressive stress. Chemical Engineering Science, 56(18):5361–5369. https://doi.org/10.1016/S0009-2509(01)00263-9

    Article  Google Scholar 

  • Tomas J, 2007. Adhesion of ultrafine particles—a micromechanical approach. Chemical Engineering Science, 62(7): 1997–2010. https://doi.org/10.1016/j.ces.2006.12.055

    Article  Google Scholar 

  • Wang H, Zhao H, Guo Z, et al., 2013. Lattice Boltzmann method for simulations of gas-particle flows over a backward-facing step. Journal of Computational Physics, 239:57–71. https://doi.org/10.1016/j.jcp.2012.12.032

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Pui DYH, 2009. Filtration of aerosol particles by elliptical fibers: a numerical study. Journal of Nanoparticle Research, 11(1):185–196. https://doi.org/10.1007/s11051-008-9422-z

    Article  Google Scholar 

  • Yang M, Li S, Yao Q, 2013. Mechanistic studies of initial deposition of fine adhesive particles on a fiber using discrete-element methods. Powder Technology, 248:44–53. https://doi.org/10.1016/j.powtec.2012.12.016

    Article  Google Scholar 

  • Zhu HP, Zhou ZY, Yang RY, et al., 2008. Discrete particle simulation of particulate systems: a review of major applications and findings. Chemical Engineering Science, 63(23):5728–5770. https://doi.org/10.1016/j.ces.2008.08.006

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Jeffrey S. MARSHALL (University of Vermont, USA), and grateful to Dr. Guan-qing LIU, Dr. Huang ZHANG, Mr. Wen-wei LIU, and Mr. Sheng CHEN (Tsinghua University, China) for their useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shui-qing Li.

Additional information

Project supported by the National Key Research and Development Program of China (No. 2017YFB0603203) and the National Natural Science Foundation of China (No. 51390491)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, R., Yang, Mm. & Li, Sq. Filtration of micro-particles within multi-fiber arrays by adhesive DEM-CFD simulation. J. Zhejiang Univ. Sci. A 19, 34–44 (2018). https://doi.org/10.1631/jzus.A1700156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1700156

Keywords

关键词

CLC number

Navigation