Skip to main content
Log in

Longitudinal resistance performance of granular ballast beds under cyclic symmetric displacement loading

散粒体道床在对称位移循环加载下的纵向阻力性能

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The longitudinal resistance performance of a granular ballast bed under cyclic symmetric displacement loading was studied based on a full-scale test model of ballast track structures. The change law of the longitudinal resistance characteristics of the ballast bed under variable displacement amplitudes was analyzed. The results show that: the resistance-displacement curves of a granular ballast bed are a set of closed hysteretic curves, indicating obvious energy consumption; a granular ballast bed softens gradually during the cyclic process with constant displacement amplitude, and the residual deformation rate increases nonlinearly with increasing cycle number; the peak value of the longitudinal resistance of lines decreases with increasing cycle number; the cyclic softening of a granular ballast bed is dependent on the displacement amplitude–the higher the displacement, the more severe the cyclic softening will become; after cyclic displacement loading is applied several times, the longitudinal resistance of the bed will degenerate obviously, and the higher the displacement amplitude, the higher the longitudinal resistance attenuation rate of the ballast bed will become.

中文概要

目 的

研究散粒体道床在纵向反复荷载下的阻力性能及变化规律是深入理解有砟轨道无缝线路动态服役性能和辨识无缝线路在循环荷载作用下的受力变形机理的基础。本文旨在利用室内足尺试验模型及专用加载系统, 分析散粒体道床受循环位移荷载时的纵向阻力性能, 探索不同位移加载幅值对有砟道床纵向阻力的影响。

创新点

1. 利用有砟轨道结构足尺试验模型及循环加载装置, 测试循环荷载下的道床纵向阻力-位移滞回曲线; 2. 根据循环加载试验曲线, 构建滞回模型, 刻划散粒体道床的纵向承载和传力性能。

方 法

1. 通过试验分析, 得到散粒体道床在周期性荷载作用下的力-位移曲线(图6、8 和10); 2. 基于试验数据, 分析散粒体道床在周期性荷载下的滞回准则, 得到不同位移幅值下滞回曲线的演化规律(图7、9 和11); 3. 通过图像识别技术, 对周期性荷载作用下道砟颗粒的运动规律进行分析, 从散粒体道床的细观作用机理分析宏观力学表现(图16~18)。

结 论

1. 散粒体道床在循环往复荷载下的纵向阻力-位移曲线为一条封闭的滞回曲线, 且存在明显的耗能现象; 2. 在位移幅值保持不变的循环过程中, 散粒体道床表现出一种循环软化行为; 3. 位移幅值不同, 道床纵向阻力的衰减率不同, 且位移越大, 退化效应越明显。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, W.F., Fair, P., 2008. Behaviour of railroad ballast under monotonic and cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 134(3): 316–327. https://doi.org/10.1061/(asce)1090-0241(2008)134:3(316)

    Article  Google Scholar 

  • Chen, R., Wang, P., Wei, X.K., 2013. Track-bridge longitudinal interaction of continuous welded rails on arch bridge. Mathematical Problems in Engineering, 2013:494137. http://dx.doi.org/10.1155/2013/494137

    Google Scholar 

  • Esveld, C., 2001. Modern Railway Track. MRT Press, the Netherlands.

    Google Scholar 

  • Han, J., Zhao, G.T., Xiao, X.B., et al., 2015. Effect of softening of cement asphalt mortar on vehicle operation safety and track dynamics. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(12): 976–986. http://dx.doi.org/10.1631/jzus.A1500080

    Article  Google Scholar 

  • Hayano, K., Koike, Y., Nakamura, T., et al., 2014. Effects of sleeper shape on lateral resistance of railway ballasted tracks. Proceedings of the Geo-Shanghai International Conference, p.491–499. http://dx.doi.org/10.1061/9780784413425.050

    Google Scholar 

  • Hayashikawa, T., Abdel Raheem, S.E., Hashimoto, I., 2004. Nonlinear seismic response of soil-foundation-structure interaction model of cable-stayed bridges tower. 13th World Conference on Earthquake Engineering, No. 3045.

    Google Scholar 

  • Indraratna, B., Salim, W., 2005. Mechanics of Ballasted Rail Tracks: a Geotechnical Perspective. Taylor and Francis/ Balkema, London, UK.

    Google Scholar 

  • Indraratna, B., Thakur, P.K., Vinod, J.S., 2010. Experimental and numerical study of railway ballast behavior under cyclic loading. International Journal of Geomechanics, 10(4): 136–144. http://dx.doi.org/10.1061/(asce)GM.1943-5622.0000055

    Article  Google Scholar 

  • Indraratna, B., Nimbalkar, S., Neville, T., 2014a. Performance assessment of reinforced ballasted rail track. Proceedings of the Institution of Civil Engineers-Ground Improvement, 167(1): 24–34. http://dx.doi.org/10.1680/grim.13.00018

    Article  Google Scholar 

  • Indraratna, B., Nimbalkar, S., Rujikiatkamjorn, C., 2014b. From theory to practice in track geomechanics–Australian perspective for synthetic inclusions. Transportation Geotechnics, 1(4): 171–187. http://dx.doi.org/10.1016/j.trgeo.2014.07.004

    Article  Google Scholar 

  • Jing, G.Q., 2012. Railway Ballast Bed. China Railway Publishing House, Beijing, China (in Chinese).

    Google Scholar 

  • Kennedy, J., 2011. A Full-scale Laboratory Investigation into Railway Track Substructure Performance Ballast Reinforcement. PhD Thesis, Heriot-Watt University, Edinburgh, UK.

    Google Scholar 

  • Kerokoski, O., 2010. Determination of longitudinal and transverse railway track resistance. Joint Rail Conference, p.157–165. http://dx.doi.org/10.1115/JRC2010-36087

    Google Scholar 

  • Le Pen, L., 2008. Track Behaviour: the Importance of the Sleeper to Ballast Interface. PhD Thesis, University of Southampton, Southampton, UK.

    Google Scholar 

  • Le Pen, L., Powrie, W., 2011. Contribution of base, crib and shoulder ballast to the lateral sliding resistance of railway track: a geotechnical perspective. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 225(2): 113–128. http://dx.doi.org/10.1177/0954409710397094

    Article  Google Scholar 

  • Le Pen, L., Bhandari, A.R., Powrie, W., 2014. Sleeper end resistance of ballasted railway tracks. Journal of Geotechnical and Geoenvironmental Engineering, 140(5): 04014004. http://dx.doi.org/10.1061/(asce)GT.1943-5606.0001088

    Article  Google Scholar 

  • Lim, W.L., 2004. Mechanics of Railway Ballast Behaviour. PhD Thesis, University of Nottingham, Nottingham, UK.

    Google Scholar 

  • Mamou, A., Powrie, W., Priest, J.A., et al., 2017. The effects of drainage on the behaviour of railway track foundation materials during cyclic loading. Géotechnique, 68(4): 1–10. http://dx.doi.org/10.1680/jgeot.15.P.278

    Article  Google Scholar 

  • MOR (Ministry of Railways of the People’s Republic of China), 2008. Railway Ballast, TB/T 2140-2008. MOR, China (in Chinese).

  • Nimbalkar, S., Indraratna, B., 2016. Improved performance of ballasted rail track using geosynthetics and rubber shockmat. Journal of Geotechnical and Geoenvironmental Engineering, 142(8):04016031. http://dx.doi.org/10.1061/(asce)GT.1943-5606.0001491

    Article  Google Scholar 

  • Nurmikolu, A., 2012. Key aspects on the behaviour of the ballast and substructure of a modern railway track: research-based practical observations in Finland. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(11): 825–835. http://dx.doi.org/10.1631/jzus.A12ISGT1

    Article  Google Scholar 

  • Ruge, P., Birk, C., 2007. Longitudinal forces in continuously welded rails on bridge decks due to nonlinear track bridge interaction. Computers & Structures, 85(7–8): 458–475. http://dx.doi.org/10.1016/j.compstruc.2006.09.008

    Article  Google Scholar 

  • Shi, Y.J., Wang, M., Wang, Y.Q., 2011. Experimental and constitutive model study of structural steel under cyclic loading. Journal of Constructional Steel Research, 67(8): 1185–1197. http://dx.doi.org/10.1016/j.jcsr.2011.02.011

    Article  Google Scholar 

  • Sung, W., Shih, M., Lin, C., 2005. The critical loading for lateral buckling of continuous welded rail. Journal of Zhejiang University-SCIENCE, 6A(8):p.878–885. http://dx.doi.org/10.1631/jzus.2005.A0878

    Article  Google Scholar 

  • UIC (International Union of Railways), 2001. Track/Bridge Interaction Recommendations for Calculations, UIC 774-3E. International Union of Railways, Paris, France.

    Google Scholar 

  • Wang, Z.G., Jing, G.Q., Yu, Q.F., et al., 2015. Analysis of ballast direct shear tests by discrete element method under different normal stress. Measurement, 63: 17–24. http://dx.doi.org/10.1016/j.measurement.2014.11.012

    Article  Google Scholar 

  • Yan, B., Dai, G.L., 2014. Analysis of interaction between continuously-welded rail and high-speed railway bridges considering loading-history. Journal of the China Railway Society, 36(6): 75–80 (in Chinese).

    Google Scholar 

  • Zakeri, J.A., Barati, M., 2015. Utilizing the track panel displacement method for estimating vertical load effects on the lateral resistance of continuously welded railway track. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 229(3): 262–267. http://dx.doi.org/10.1177/0954409713508937

    Article  Google Scholar 

  • Zhou, D.P., 1995. Rheological Mechanics and Application in Geotechnical Engineering. Southwest Jiaotong University Press, Chengdu, China (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 51425804, U1234201, and 1334203), and the Doctorial Innovation Fund of Southwest Jiaotong University (No. 2014310016), China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Jl., Liu, H., Xu, Jm. et al. Longitudinal resistance performance of granular ballast beds under cyclic symmetric displacement loading. J. Zhejiang Univ. Sci. A 18, 648–659 (2017). https://doi.org/10.1631/jzus.A1700058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1700058

Key words

关键词

CLC number

Navigation