Skip to main content
Log in

Dynamic behavior of a hydraulic crane operating a freely suspended payload

液压起重机操作自由悬浮载荷的动态特性

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

We describe an investigation of the dynamic behavior of a hydraulically driven crane with a freely suspended payload during luffing and slewing motions. To simplify the task, the two movements are considered separately. Taking into account only one motion at a time, the crane is regarded as a three-link kinematic chain with revolute joints. The forward dynamics problem is solved for a crane with three rotational degrees of freedom, two of which describe the load swinging. In both the cases studied, the links are driven by a torque applied via a hydraulic drive, i.e., a linear actuator for the luffing case and a rack and pinion mechanism for the slewing motion. To compose the set of differential equations for the forward dynamics problem, a method based on a general Newton-Euler algorithm is used. From these simulations the time histories of various parameters, namely the swinging angles, hydraulic pressures, and joint forces, are determined. The results obtained via simulations are confirmed experimentally and a good agreement between the two outputs is observed. The results also show that a hydraulic drive system using fast opening flow direction control valves increases the load swing and imposes extensive inertial forces and problems of fatigue and reliability.

中文概要

目 的

对载有自由悬浮载荷的液压驱动起重机的动态特 性分别在升降运动和回转运动两种工况下进行 研究, 建立动力学模型并验证其正确性。

创新点

1. 为了简化任务, 将两种运动分开讨论。一次只 考虑一种运动, 把起重机看作具有三个转动关节 连接的运动链; 2. 为起重臂的运动问题构造微分 方程, 使用了通用的牛顿-欧拉算法; 3. 对运动和 动力模型进行仿真, 得到摆动角度、液压压强和 连接作用力随时间的变化曲线, 并通过实验进行 了验证。

方 法

1. 建立系统的运动和动力模型, 分别对回转运动 和升降运动两种工况下的液压缸压强进行推导; 2. 在两种工况下, 对起重臂转角、液压缸压力和 最大行程前臂液压缸反作用力进行仿真计算; 3. 将实验获得的有关参数的曲线与仿真得到的 曲线进行对比, 验证模型的正确性。

结 论

1. 在液压起重机运动期间悬浮载荷的摆动对起重 机的机械系统和液压驱动系统本身具有强烈的 影响, 所以在系统设计中不能忽视; 2. 系统性能 提升的主要方向是安装控制系统以减小载荷摆 动(特别是在起重机回转运动时); 3. 本文建立 的考虑了负载的大角度摆动和液压驱动系统的 动力学模型得到了验证, 表明其对起重机运动仿 真的适用性。尽管分开考虑了两种典型运动, 但 所用的建模方法还是适合对起重机一般运动的 研究。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N., 2003. Dynamics and control of cranes: a review. Journal of Vibration and Control, 9(7): 863–908. http://dx.doi.org/10.1177/1077546303009007007

    Article  MATH  Google Scholar 

  • Akers, A., Gassman, M., Smith, R., 2006. Hydraulic Power Systems Analysis. CRC Press, USA, p.77–100.

    MATH  Google Scholar 

  • Chin, C., Nayfeh, A.H., Abdel-Rahman, E., 2001. Nonlinear dynamics on a boom crane. Journal of Vibration and Control, 7(2): 199–220. http://dx.doi.org/10.1177/107754630100700204

    Article  MATH  Google Scholar 

  • Craig, J.J., 2005. Introduction to Robotics: Mechanics and Control (3rd Edition). Pearson Prentice Hall, p.171–172.

    Google Scholar 

  • Devesse, W., 2012. Slew Control Methods for Tower Cranes. MS Thesis, KTH Industrial Engineering and Management Machine Design, Stockholm, Sweden.

    Google Scholar 

  • Divisiev, V., 1986. Essential Hoisting Machines. Technika, Sofia, p.45–49 (in Bulgarian).

    Google Scholar 

  • Greenwood, D.T., 1977. Classical Dynamics. Prentice Hall, p.13–25.

    Google Scholar 

  • Grigorov, B., 2013. A generalized Newton-Euler algorithm for dynamic simulation of robot-manipulators with revolute joints. Recent, 14(2): 99–105.

    Google Scholar 

  • Gruening, T., Kunze, G., Katterfeld, A., 2010. Simulating the working process of construction machines. 3rd International Conference & Exhibition BulkSolids, p.180–189.

    Google Scholar 

  • Gudarzi, M., 2016. Reliable robust controller for half-car active suspension systems based on human-body dynamics. Facta Universitatis Series: Mechanical Engineering, 14(2): 121–134.

    Google Scholar 

  • Hartenberg, R.S., Denavit, J., 1955. A kinematic notation for lower pair mechanisms based on matrices. Journal of Applied Mechanics, 22(2): 215–221.

    MathSciNet  MATH  Google Scholar 

  • Jerman, B., 2006. An enhanced mathematical model for investigating the dynamic loading of a slewing crane. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220(4): 421–433. http://dx.doi.org/10.1243/09544062C08205

    Google Scholar 

  • Jovanovic, V., Janosevic, D., Petrovic, N., 2014. Experimental determination of bearing loads in rotating platform drive mechanisms of hydraulic excavators. Facta Universitatis Series: Mechanical Engineering, 12(2): 157–169.

    Google Scholar 

  • Ju, F., Choo, Y., Cui, F.S., 2006. Dynamic response of tower crane induced by the pendulum motion of the payload. International Journal of Solids and Structures, 43(2): 376–389. http://dx.doi.org/10.1016/j.ijsolstr.2005.03.078

    Article  MATH  Google Scholar 

  • Lawrence, J., Singhose, W., 2010. Command shaping slewing motions for tower cranes. Journal of Vibration and Acoustics, 132(1):011002. http://dx.doi.org/10.1115/1.3025845

    Article  Google Scholar 

  • Linjama, M., Virvalo, T., 1999. Low-order dynamic model for flexible hydraulic cranes. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 213(1): 11–22. http://dx.doi.org/10.1243/0959651991540340

    Article  Google Scholar 

  • Marinkovic, Z., Marinkovic, D., Petrovic, G., et al., 2012. Modeling and simulation of dynamic behaviour of electric motor driven mechanisms. Tehnicki Vjesnik, 19(4): 717–725.

    Google Scholar 

  • Marinovic, I., Sprecic, D., Jerman, B., 2012. A slewing crane payload dynamics. Tehnicki Vjesnik, 19(4): 907–916.

    Google Scholar 

  • Palis, F., Palis, S., 2008. High performance tracking control of automated slewing cranes. In: Balaguer, C., Abderrahim, M. (Eds.), Robotics and Automation in Construction. InTech, p.187–198. http://dx.doi.org/10.5772/5851

    Google Scholar 

  • Papadopoulos, E., Sarkar, S., 1997. The dynamics of an articulated forestry machine and its applications. IEEE International Conference on Robotics and Automation, p.323–328. http://dx.doi.org/10.1109/ROBOT.1997.620058

    Chapter  Google Scholar 

  • Pavlovic, J., Jovanovic, M., Miloevic, A., 2014. Optimal synthesis of the manipulator using two competitive methods. Facta Universitatis Series: Mechanical Engineering, 12(1): 61–72.

    Google Scholar 

  • Ren, H.L., Wang, X.L., Hu, Y.J., et al., 2008. Dynamic response analysis of a moored crane-ship with a flexible boom. Journal of Zhejiang University-Science A, 9(1): 26–31. http://dx.doi.org/10.1631/jzus.A071308

    Article  MATH  Google Scholar 

  • Sicklinger, S., Belsky, V., Engelmann, B., et al., 2014. Interface Jacobian-based co-simulation. International Journal for Numerical Methods in Engineering, 98(6): 418–444. http://dx.doi.org/10.1002/nme.4637

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, G., Liu, J., 2006. Dynamic responses of hydraulic crane during luffing motion. Mechanism and Machine Theory, 41(11): 1273–1288. http://dx.doi.org/10.1016/j.mechmachtheory.2004.07.014

    Article  MATH  Google Scholar 

  • Sun, G., Kleeberger, M., Liu, J., 2005. Complete dynamic calculation of lattice mobile crane during hoisting motion. Mechanism and Machine Theory, 40(4): 447–466. http://dx.doi.org/10.1016/j.mechmachtheory.2004.07.014

    Article  MATH  Google Scholar 

  • Troha, S., Milovancevic, M., Kuchak, A., 2015. Software testing of the rall vehicle dynamic characteristics. Facta Universitatis Series: Mechanical Engineering, 13(2): 109–121.

    Article  Google Scholar 

  • Vaynson, A., 1989. Hoisting Machines. Machinostroenie, Moscow, p.124–134 (in Russian).

    Google Scholar 

  • Vukobratovic, M., Potkonjak, V., 1982. Dynamics of Manipulation Robots: Theory and Application. Springer-Verlag, Berlin, Germany, p.87–116.

    Book  MATH  Google Scholar 

  • Zill, D., Cullen, M., 2006. Advanced Engineering Mathematics. Jones & Bartlett Publishers, p.319.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosen Mitrev.

Additional information

ORCID: Bozhidar GRIGOROV, http://orcid.org/0000-0002-7412-2858; Rosen MITREV, http://orcid.org/0000-0001-6276-1225

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorov, B., Mitrev, R. Dynamic behavior of a hydraulic crane operating a freely suspended payload. J. Zhejiang Univ. Sci. A 18, 268–281 (2017). https://doi.org/10.1631/jzus.A1600292

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600292

Keywords

关键词

CLC number

Navigation