Skip to main content
Log in

Lithium-ion battery state-of-charge estimation based on deconstructed equivalent circuit at different open-circuit voltage relaxation times

不同开路电压松弛时间下基于等效电路解构的锂离子电池荷电状态估计

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Equivalent circuit model-based state-of-charge (SOC) estimation has been widely studied for power lithium-ion batteries. An appropriate relaxation period to measure the open-circuit voltage (OCV) should be investigated to both ensure good SOC estimation accuracy and improve OCV test efficiency. Based on a battery circuit model, an SOC estimator in the combination of recursive least squares (RLS) and the extended Kalman filter is used to mitigate the error voltage between the measurement and real values of the battery OCV. To reduce the iterative computation complexity, a two-stage RLS approach is developed to identify the model parameters, the battery circuit of which is divided into two simple circuits. Then, the measurement values of the OCV at varying relaxation periods and three temperatures are sampled to establish the relationships between SOC and OCV for the developed SOC estimator. Lastly, dynamic stress test and federal test procedure drive cycles are used to validate the model-based SOC estimation method. Results show that the relationships between SOC and OCV at a short relaxation time, such as 5 min, can also drive the SOC estimator to produce a good performance.

中文概要

目 的

开路电压是基于模型的电池荷电状态估计的必要参数, 其测试耗时大、效率低。本文旨在测试各种电压松弛时间的荷电状态-开路电压关系, 研究其对开路电压法和等效电路模型的荷电状态估计准确度的影响, 提高开路电压测试效率。

创新点

1. 通过电路解构方法, 将二阶阻容电路分解为 简单路, 运用二阶段递推最小二乘法辨识电路 模型的参数; 2. 基于递推最小二乘法和卡尔曼 滤波算法, 建立电路参数辨识和荷电状态估计 的的联合自适应算法, 研究电池电压松弛时间 对基于等效电路模型的荷电状态估计的影响。

方 法

1. 通过电路解构技术和理论推导, 构建辨识二 阶阻容等效电路参数的二阶段递推最小二乘法 辨识方法(图2 和公式(4)~(9)); 2. 将二 阶段递推最小二乘法和扩展卡尔曼滤波器集 成, 建立适应工况变化的电池模型参数辨识和 状态估计的联合算法(图3); 3. 通过电池测 试, 建立多温度和多电压松弛时间的荷电状态 与开路电压的关系, 驱动自适应联合算法, 获 得既保证荷电状态估计准确度, 又缩短开路电 压测试时间的电压松弛时间。

结 论

1. 二阶段递推最小二乘法既能简化矩阵计算, 又能够保证电路参数的辨识非负性; 2. 联合自 适应算法能够适应工况变化辨识模型参数和估 计荷电状态; 3. 联合自适应算法的结果表明, 5 min 的电压松弛时间既能保证荷电状态估计性 能, 又能极大地提高开路电压测试效率。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aung, H., Low, K.S., Goh, S.T., 2015. State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-UKFST) in nanosatellite. IEEE Transactions on Power Electronics, 30(9): 4774–4783. http://dx.doi.org/10.1109/TPEL.2014.2361755

    Article  Google Scholar 

  • Cheng, X., Yao, L., Xing, Y., et al., 2016. Novel parametric circuit modeling for Li-ion batteries. Energies, 9(7): 539–553. http://dx.doi.org/10.3390/en9070539

    Article  Google Scholar 

  • Chui, C.K., Chen, G., 2009. Kalman Filtering with Real-time Applications. Springer, Berlin, Germany, p.181–184.

    MATH  Google Scholar 

  • Dai, H., Zhang, X., Wei, X., et al., 2013. Cell-BMS validation with a hardware-in-the-loop simulation of lithium-ion battery cells for electric vehicles. International Journal of Electrical Power and Energy Systems, 52: 174–184.

    Article  Google Scholar 

  • Ecker, M., Gerschler, J.B., Vogel, J., et al., 2012. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data. Journal of Power Sources, 215: 248–257. http://dx.doi.org/10.1016/j.jpowsour.2012.05.012

    Article  Google Scholar 

  • Einhorn, M., Conte, F.V., Kral, C., et al., 2013. Comparison, selection, and parameterization of electrical battery models for automotive applications. IEEE Transactions on Power Electronics, 28(3): 1429–1437. http://dx.doi.org/10.1109/TPEL.2012.2210564

    Article  Google Scholar 

  • Fleischer, C., Waag, W., Heyn, H.M., et al., 2014. On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models: Part 1. Requirements, critical review of methods and modeling. Journal of Power Sources, 260: 276–291. http://dx.doi.org/10.1016/j.jpowsour.2014.01.129

    Google Scholar 

  • Haykin, S., 2001. Kalman Filtering and Neural Networks. John & Wiley Inc., New York, USA, p.123–174.

    Book  Google Scholar 

  • Hu, X., Sun, F., Cheng, X., 2011. Recursive calibration for a lithium iron phosphate battery for electric vehicles using extended Kalman filtering. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(11): 818–825. http://dx.doi.org/10.1631/jzus.A1100141

    Article  Google Scholar 

  • Huria, T., Ludovici, G., Lutzemberger, G., 2014. State of charge estimation of high power lithium iron phosphate cells. Journal of Power Sources, 249: 92–102. http://dx.doi.org/10.1016/j.jpowsour.2013.10.079

    Article  Google Scholar 

  • Jackey, R., Saginaw, M., Sanghvi, P., et al., 2013. Battery model parameter estimation using a layered technique: an example using a lithium iron phosphate cell. SAE Technical Paper, 2013-01-1547. http://dx.doi.org/10.4271/2013-01-1547

    Google Scholar 

  • Khan, M.R., Mulder, G., van Mierlo, J., 2014. An online framework for state of charge determination of battery systems using combined system identification approach. Journal of Power Sources, 246: 629–641. http://dx.doi.org/10.1016/j.jpowsour.2013.07.092

    Article  Google Scholar 

  • Lee, J., Nam, O., Cho, B.H., 2007. Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering. Journal of Power Sources, 174(1): 9–15. http://dx.doi.org/10.1016/j.jpowsour.2007.03.072

    Article  Google Scholar 

  • Lee, S., Kim, J., 2015. Discrete wavelet transform-based denoising technique for advanced state-of-charge estimator of a lithium-ion battery in electric vehicles. Energy, 83: 462–473. http://dx.doi.org/10.1016/j.energy.2015.02.046

    Article  Google Scholar 

  • Leng, F., Tan, C.M., Yazami, R., et al., 2014. A practical framework of electrical based online state-of-charge estimation of lithium ion batteries. Journal of Power Sources, 255: 423–430. http://dx.doi.org/10.1016/j.jpowsour.2014.01.020

    Article  Google Scholar 

  • Mastali, M., Vazquez-Arenas, J., Fraser, R., et al., 2013. Battery state of the charge estimation using Kalman filtering. Journal of Power Sources, 239: 294–307. http://dx.doi.org/10.1016/j.jpowsour.2013.03.131

    Article  Google Scholar 

  • Northrop, P.W.C., Suthar, B., Ramadesigan, V., et al., 2014. Efficient simulation and reformulation of lithium-ion battery models for enabling electric transportation. Journal of the Electrochemical Society, 161(8):E3149–E3157. http://dx.doi.org/10.1149/2.018408jes

    Article  Google Scholar 

  • Pei, L., Wang, T., Lu, R., et al., 2014. Development of a voltage relaxation model for rapid open-circuit voltage prediction in lithium-ion batteries. Journal of Power Sources, 253: 412–418. http://dx.doi.org/10.1016/j.jpowsour.2013.12.083

    Article  Google Scholar 

  • Petzl, M., Danzer, M.A., 2013. Advancements in OCV measurement and analysis for lithium-ion batteries. IEEE Transactions on Energy Conversion, 28(3): 675–681. http://dx.doi.org/10.1109/TEC.2013.2259490

    Article  Google Scholar 

  • Piller, S., Perrin, M., Jossen, A., 2001. Methods for state-ofcharge determination and their applications. Journal of Power Sources, 96(1): 113–120. http://dx.doi.org/10.1016/S0378-7753(01)00560-2

    Article  Google Scholar 

  • Plett, G.L., 2004. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation. Journal of Power Sources, 134(2):277–292. http://dx.doi.org/10.1016/j.jpowsour.2004.02.033

    Article  Google Scholar 

  • Plett, G.L., 2006. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Introduction and state estimation. Journal of Power Sources, 161(2): 1356–1368. http://dx.doi.org/10.1016/j.jpowsour.2006.06.003

    Article  Google Scholar 

  • Roscher, M.A., Assfalg, J., Bohlen, O.S., 2011. Detection of utilizable capacity deterioration in battery systems. IEEE Transactions on Vehicle Technology, 60(1): 98–103. http://dx.doi.org/10.1109/TVT.2010.2090370

    Article  Google Scholar 

  • Sayed, A.H., 2008. Adaptive Filters. John Wiley & Sons, Inc., Hoboken, New Jersey, USA, p.501–508.

    Book  Google Scholar 

  • Seaman, A., Dao, T.S., McPhee, J., 2014. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. Journal of Power Sources, 256: 410–423. http://dx.doi.org/10.1016/j.jpowsour.2014.01.057

    Article  Google Scholar 

  • Sepasi, S., Ghorbani, R., Liaw, B.Y., 2014. Improved extended Kalman filter for state of charge estimation of battery pack. Journal of Power Sources, 255: 368–376. http://dx.doi.org/10.1016/j.jpowsour.2013.12.093

    Article  Google Scholar 

  • Speirs, J., Contestabile, M., Houari, Y., et al., 2014. The future of lithium availability for electric vehicle batteries. Renewable and Sustainable Energy Reviews, 35: 183–193. http://dx.doi.org/10.1016/j.rser.2014.04.018

    Article  Google Scholar 

  • Sun, F., Hu, X., Zou, Y., et al., 2011. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy, 36(5): 3531–3540.

    Article  Google Scholar 

  • Waag, W., Fleischer, C., Sauer, D.U., 2014. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. Journal of Power Sources, 258: 321–339. http://dx.doi.org/10.1016/j.jpowsour.2014.02.064

    Article  Google Scholar 

  • Wang, J., Guo, J., Ding, L., 2009. An adaptive Kalman filtering based state of charge combined estimator for electric vehicle battery pack. Energy Conversion and Management, 50(12): 3182–3186. http://dx.doi.org/10.1016/j.enconman.2009.08.015

    Article  Google Scholar 

  • Xia, B., Wang, H., Tian, Y., et al., 2015. State of charge estimation of lithium-ion batteries using an adaptive cubature Kalman filter. Energies, 8(6): 5916–5936. http://dx.doi.org/10.3390/en8065916

    Article  Google Scholar 

  • Xing, Y., He, W., Pecht, M., et al., 2014. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Applied Energy, 113: 106–115. http://dx.doi.org/10.1016/j.apenergy.2013.07.008

    Article  Google Scholar 

  • Xiong, R., Sun, F., Chen, Z., et al., 2013a. A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles. Applied Energy, 113: 463–476. http://dx.doi.org/10.1016/j.apenergy.2013.07.061

    Article  Google Scholar 

  • Xiong, R., Sun, F., He, H., et al., 2013b. A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles. Energy, 63: 295–308. http://dx.doi.org/10.1016/j.energy.2013.10.027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-ming Cheng.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51677006)

ORCID: Xi-ming CHENG, http://orcid.org/0000-0001-5933-2630

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Xm., Yao, Lg. & Pecht, M. Lithium-ion battery state-of-charge estimation based on deconstructed equivalent circuit at different open-circuit voltage relaxation times. J. Zhejiang Univ. Sci. A 18, 256–267 (2017). https://doi.org/10.1631/jzus.A1600251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600251

Keywords

关键词

CLC number

Navigation