Skip to main content
Log in

Designing a novel consensus protocol for multiagent systems with general dynamics under directed networks

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The consensus problem for general linear multi-agent systems (MASs) under directed topology is investigated. First, a novel consensus protocol based on proportional-integral-derivative (PID) control is proposed. Second, the consensus problem is converted into an asymptotic stability problem through transformations. Third, through a state projection method the consensus condition is proved and the explicit expression of the consensus function is given. Then, a Lyapunov function is constructed and the gain matrices of the protocol are given based on the linear matrix inequality. Finally, two experiments are conducted to explain the advantages of the method. Simulation results show the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreasson, M., Sandberg, H., Dimarogonas, D.V., et al., 2012. Distributed integral action: stability analysis and frequency control of power systems. 51st Proc. IEEE Conf. on Decision and Control, p.2077–2083. https://doi.org/10.1109/CDC.2012.6426463

    Google Scholar 

  • Cai, H., Huang, J., 2014. The leader-following attitude control of multiple rigid spacecraft systems. Automatica, 50(4): 1109–1115. https://doi.org/10.1016/j.automatica.2014.01.003

    Article  MathSciNet  Google Scholar 

  • Chen, K.R., Wang, J.W., Zhang, Y., et al., 2015. Consensus of second-order nonlinear multi-agent systems under state-controlled switching topology. Nonl. Dynam., 81(4): 1871–1878. https://doi.org/10.1007/s11071-015-2112-3

    Article  MathSciNet  Google Scholar 

  • Cheng, L., Wang, Y., Ren, W., et al., 2015. Containment control of multiagent systems with dynamic leaders based on a PIn type approach. IEEE Trans. Cybern., 46(12): 3004–3017. https://doi.org/10.1109/TCYB.2015.2494738

    Article  Google Scholar 

  • Daniel, B., Mario, D., 2014. Distributed PID control for consensus of homogeneous and heterogeneous networks. IEEE Trans. Contr. Netw. Syst., 22(2): 154–163. https://doi.org/10.1109/TCNS.2014.2378914

    MathSciNet  MATH  Google Scholar 

  • Fax, J.A., Murray, R.M., 2004. Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Contr., 49(9): 1465–1476. https://doi.org/10.1109/TAC.2004.834433

    Article  MathSciNet  Google Scholar 

  • Ji, L., Liao, X., 2013. Consensus problems of first-order dynamic multi-agent systems with multiple time delays. Chin. Phys. B, 4(22): 040203. https://doi.org/10.1088/1674-1056/22/4/040203

    Article  Google Scholar 

  • Li, Z.K., Ren, W., Liu, X.D., et al., 2013. Distributed consensus of linear multi-agent systems with adaptive dynamic protocols. Automatica, 49(7): 1986–1995. https://doi.org/10.1016/j.automatica.2013.03.015

    Article  MathSciNet  Google Scholar 

  • Lin, Z.J., Hong, T., Liu, H., 2015. Consensus based on learning game theory with a UAV rendezvous application. Chin. J. Aeronaut., 28(1): 191–199. https://doi.org/10.1016/j.cja.2014.12.009

    Article  Google Scholar 

  • Liu, Y.F., Geng, Z.Y., 2015. Finite-time formation control for linear multi-agent systems: a motion planning approach. Syst. Contr. Lett., 85(9): 54–60. https://doi.org/10.1016/j.sysconle.2015.08.009

    Article  MathSciNet  Google Scholar 

  • Lombana, D.A.B., di Bernardo, M., 2015. Distributed PID control for consensus of homogeneous and heterogeneous networks. IEEE Trans. Contr. Netw. Syst., 2(2): 154–163. https://doi.org/10.1109/TCNS.2014.2378914

    Article  MathSciNet  Google Scholar 

  • Mu, X.W., Yang, Z., Liu, K., et al., 2015. Containment control of general multi-agent systems with directed random switching topology. J. Franklin Inst., 352(10): 4067–4080. https://doi.org/10.1016/j.jfranklin.2015.05.039

    Article  MathSciNet  Google Scholar 

  • Olfati-Saber, R., 2006. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Contr., 51(3): 401–420. https://doi.org/10.1109/TAC.2005.864190

    Article  MathSciNet  Google Scholar 

  • Olfati-Saber, R., Fax, J.A., Murray, R.M., 2007. Consensus and cooperation in networked multi-agent systems. Proc. IEEE, 95(1): 215–233. https://doi.org/10.1109/JPROC.2006.887293

    Article  Google Scholar 

  • Ren, W., Beard, R.W., 2005. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Contr., 50(5): 655–661.

    Article  MathSciNet  Google Scholar 

  • Ren, W., Beard, R., Atkins, E., 2007. Information consensus in multivehicle cooperative control. IEEE Contr. Syst., 27(2): 71–82. https://doi.org/10.1109/MCS.2007.338264

    Article  Google Scholar 

  • Ruggero, C., Edoardo, D., Sandro, Z., 2011. A PI controller based on asymmetric gossip communications for clocks synchronization in wireless sensors networks. 50th IEEE Conf. on Decision and Control and European Control, p.7512–7517. https://doi.org/10.1109/CDC.2011.6161101

    Google Scholar 

  • Sam, S., Khan, U.A., 2015. Leader-follower consensus in mobile sensor networks. IEEE Signal Process. Lett., 22(12): 2249–2253. https://doi.org/10.1109/LSP.2015.2474134

    Article  Google Scholar 

  • Su, H.S., Zhang, W., 2008. Second-order consensus of multiple agents with coupling delay. 7th World Congress on Intelligent Control and Automation, p.7181–7186. https://doi.org/10.1109/WCICA.2008.4594034

    Google Scholar 

  • Sun, G., 2012. Second-order consensus of multiple agents with bounded control inputs and preserved network connectivity. Commun. Theor. Phys., 57(4): 624–628. https://doi.org/10.1088/0253-6102/57/4/18

    Article  MathSciNet  Google Scholar 

  • Wang, Y., Cheng, L., Hou, Z., et al., 2015. Coordinated transportation of a group of unmanned ground vehicles. 34th Chinese Control Conf., p.7027–7032. https://doi.org/10.1109/ChiCC.2015.7260750

    Google Scholar 

  • Yang, C.X., Hong, W.X., Huang, L.Y., et al., 2014. Fast consensus tracking of multiagent systems with diverse communication delays and input delays. Math. Probl. Eng., 2014: 1–10. https://doi.org/10.1155/2014/253806

    MathSciNet  Google Scholar 

  • Yang, X.G., Xi, J.X., Wu, J.Y., et al., 2015. Consensus transformation for multi-agent systems with topology variances and time-varying delays. Neurocomputing, 168(5): 1059–1064. https://doi.org/10.1016/j.neucom.2015.05.018

    Article  Google Scholar 

  • Zhang, H., Yang, R., Yan, H., et al., 2015. H consensus of event-based multi-agent systems with switching topology. Inform. Sci., 370(24): 623–635. https://doi.org/10.1016/j.ins.2015.11.019

    Google Scholar 

  • Zhang, H.T., Cheng, Z.M., Chen, G.R., 2015. Model predictive flocking control for second-order multi-agent systems with input constraints. IEEE Trans. Circ. Syst. I, 62(6): 1599–1606. https://doi.org/10.1109/TCSI.2015.2418871

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-liang Li.

Additional information

Project supported by the National Natural Science Foundation of China (No. 50875132)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Hl., Yang, Rn. & Li, Qn. Designing a novel consensus protocol for multiagent systems with general dynamics under directed networks. Frontiers Inf Technol Electronic Eng 18, 1071–1081 (2017). https://doi.org/10.1631/FITEE.1601422

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601422

Key words

CLC number

Navigation