Skip to main content
Log in

Thermal energy harvesting circuit with maximum power point tracking control for self-powered sensor node applications

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

We present a simple implementation of a thermal energy harvesting circuit with the maximum power point tracking (MPPT) control for self-powered miniature-sized sensor nodes. Complex start-up circuitry and direct current to direct current (DC-DC) boost converters are not required, because the output voltage of targeted thermoelectric generator (TEG) devices is high enough to drive the load applications directly. The circuit operates in the active/asleep mode to overcome the power mismatch between TEG devices and load applications. The proposed circuit was implemented using a 0.35-μm complementary metal-oxide semiconductor (CMOS) process. Experimental results confirmed correct circuit operation and demonstrated the performance of the MPPT scheme. The circuit achieved a peak power efficiency of 95.5% and an MPPT accuracy of higher than 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arsalan M, Ouda MH, Marnat L, et al., 2013. A 5.2GHz, 0.5mW RF powered wireless sensor with dual on-chip antennas for implantable intraocular pressure monitoring. IEEE MTT-S Int Microwave Symp, p.1–4. https://doi.org/10.1109/MWSYM.2013.6697639

    Google Scholar 

  • Belleville M, Fanet H, Fiorini P, et al., 2010. Energy autono-mous sensor systems: towards a ubiquitous sensor tech-nology. Microelectron J, 41(11):740–745. https://doi.org/10.1016/j.mejo.2010.01.009

    Article  Google Scholar 

  • Carlson EJ, Strunz K, Otis BP, 2010. 20 mV input boost con-verter with efficient digital control for thermoelectric energy harvesting. IEEE J Sol-State Circ, 45(4):741–750. https://doi.org/10.1109/JSSC.2010.2042251

    Article  Google Scholar 

  • Chen PH, Ishida K, Ikeuchi K, et al., 2011a. A 95 mV-startup step-up converter with Vth-tuned oscillator by fixed-charge programming and capacitor pass-on scheme. IEEE Int Solid-State Circuits Conf, p.216–217. https://doi.org/10.1109/ISSCC.2011.5746290

    Google Scholar 

  • Chen PH, Ishida K, Zhang X, et al., 2011b. A 80 mV input, fast startup dual-mode boost converter with charge-pumped pulse generator for energy harvesting. IEEE Asian Solid-State Circuits Conf, p.33–36. https://doi.org/10.1109/ASSCC.2011.6123562

    Google Scholar 

  • Cheng MH, Wu ZW, 2005. Low-power low-voltage reference using peaking current mirror circuit. Electron Lett, 41(10):572–573. https://doi.org/10.1049/el:20050316

    Article  Google Scholar 

  • Colomer-Farrarons J, Miribel-Catala P, Saiz-Vela A, et al., 2008. Power-conditioning circuitry for a self-powered system based on micro PZT generators in a 0.13 µm low-voltage low-power technology. IEEE Trans Ind Electron, 55(9):3249–3257. https://doi.org/10.1109/TIE.2008.927973

    Article  Google Scholar 

  • Doms I, Merken P, Hoof CV, et al., 2009. Capacitive power management circuit for micropower thermoelectric gen-erators with a 1.4 µA controller. IEEE J Sol-State Circ, 44(10):2824–2833. https://doi.org/10.1109/JSSC.2009.2027546

    Article  Google Scholar 

  • Im JP, Wang SW, Lee KH, et al., 2012. A 40 mV transformer-reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting. IEEE J Sol-State Circ, 47(12):3055–3067. https://doi.org/10.1109/JSSC.2012.2225734

    Article  Google Scholar 

  • Jang JH, Berdy DF, Lee JJ, et al., 2013. A wireless condition monitoring system powered by a sub-100 µW vibration energy harvester. IEEE Trans Circ Syst, 60(4):1082–1093. https://doi.org/10.1109/TCSI.2012.2215395

    Google Scholar 

  • Kausar ASMZ, Reza AW, Saleh MU, et al., 2014. Energizing wireless sensor networks by energy harvesting systems: scopes, challenges and approaches. Renew Sustain En-ergy Rev, 38:973–989. https://doi.org/10.1016/j.rser.2014.07.035

    Article  Google Scholar 

  • Kim HS, Kim GH, Lee YM, et al., 2015. A 10.6 mm3 fully-integrated, wireless sensor node with 8GHz UWB transmitter. Symp on VLSI Circuits, p.202–203. https://doi.org/10.1109/VLSIC.2015.7231258

    Google Scholar 

  • Kim J, Kim C, 2013. A DC-DC boost converter with variation tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications. IEEE Trans Power Electron, 28(8):3827–3833. https://doi.org/10.1109/TPEL.2012.2231098

    Article  Google Scholar 

  • Kim RY, Lai JS, 2008. A seamless mode transfer maximum power point tracking controller for thermoelectric gener-ator applications. IEEE Trans Power Electron, 23(5): 2310–2318. https://doi.org/10.1109/TPEL.2008.2001904

    Article  Google Scholar 

  • Lee YM, Bang SY, Lee IH, et al., 2013. A modular 1 mm3 die-stacked sensing platform with low power I2C inter-die communication and multi-modal energy harvesting. IEEE J Sol-State Circ, 48(1):229–243. https://doi.org/10.1109/JSSC.2012.2221233

    Article  Google Scholar 

  • Leonov V, Fiorini P, Sedky S, et al., 2005. Thermoelectric MEMS generators as a power supply for a body area network. 13th Int Conf on Solid-State Sensors, Actuators and Microsystems, p.291–294. https://doi.org/10.1109/SENSOR.2005.1496414

    Google Scholar 

  • Lhermet H, Condemine C, Plissonnier M, et al., 2008. Efficient power management circuit: from thermal energy har-vesting to above-IC microbattery energy storage. IEEE J Sol-State Circ, 43(1):246–255. https://doi.org/10.1109/JSSC.2007.914725

    Article  Google Scholar 

  • Li W, Yao R, Guo L, 2009. A low power CMOS bandgap voltage reference with enhanced power supply rejection. 8th Int Conf on ASIC, p.300–304. https://doi.org/10.1109/ASICON.2009.5351450

    Google Scholar 

  • Lu C, Tsui CY, Ki WH, 2011. Vibration energy scavenging system with maximum power tracking for micropower applications. IEEE Trans VLSI Syst, 19(11):2109–2119. https://doi.org/10.1109/TVLSI.2010.2069574

    Article  Google Scholar 

  • Mansano AL, Li YJ, Bagga S, et al., 2016. An autonomous wireless sensor node with asynchronous ECG monitoring in 0.18 µm CMOS. IEEE Trans Biomed Circ Syst, 10(3): 602–611. https://doi.org/10.1109/TBCAS.2015.2495272

    Article  Google Scholar 

  • Micropelt, 2018. Thin film Thermogenerator, MPG-D655. http://www.micropelt.com

  • Morimura H, Oshima S, Matsunaga K, et al., 2014. Ultra-low-power circuit techniques for mm-size wireless sensor nodes with energy harvesting. IEICE Electron Exp, 11(20):1–12. https://doi.org/10.1587/elex.11.20142009

    Article  Google Scholar 

  • Ramadass YK, Chandrakasan AP, 2011. A battery-less ther-moelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J Sol-State Circ, 46(1):333–341. https://doi.org/10.1109/JSSC.2010.2074090

    Article  Google Scholar 

  • Seeman MD, Sanders SR, Rabaey JM, 2008. An ultra-low-power power management IC for energy-scavenged wireless sensor nodes. IEEE Power Electronics Specialists Conf, p.925–931. https://doi.org/10.1109/PESC.2008.4592048

    Google Scholar 

  • Strasser M, Aigner R, Lauterbach C, et al., 2003. Micro-machined CMOS thermoelectric generators as on-chip power supply. 12th Int Conf on Solid-State Sensors, Ac-tuators and Microsystems, p.45–48. https://doi.org/10.1109/SENSOR.2003.1215249

    Google Scholar 

  • Weng PS, Tang HY, Ku PC, et al., 2013. 50 mV-input bat-teryless boost converter for thermal energy harvesting. IEEE J Sol-State Circ, 48(4):1031–1041. https://doi.org/10.1109/JSSC.2013.2237998

    Article  Google Scholar 

  • Yoon EJ, Yu CG, 2016. Power management circuits for self-powered systems based on micro-scale solar energy har-vesting. Int J Electron, 103(3):516–529. https://doi.org/10.1080/00207217.2015.1036802

    Article  Google Scholar 

  • Zhang Y, Zhang F, Shakhsheer Y, et al., 2013. A batteryless 19 µW MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE J Sol-State Circ, 48(1):199–213. https://doi.org/10.1109/JSSC.2012.2221217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Gun Yu.

Additional information

Project supported by the Incheon National University Research Grant in 2015 and partly supported by IDEC

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, EJ., Park, JT. & Yu, CG. Thermal energy harvesting circuit with maximum power point tracking control for self-powered sensor node applications. Frontiers Inf Technol Electronic Eng 19, 285–296 (2018). https://doi.org/10.1631/FITEE.1601181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601181

Key words

CLC number

Navigation