Skip to main content
Log in

Finding map regions with high density of query keywords

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

We consider the problem of finding map regions that best match query keywords. This region search problem can be applied in many practical scenarios such as shopping recommendation, searching for tourist attractions, and collision region detection for wireless sensor networks. While conventional map search retrieves isolate locations in a map, users frequently attempt to find regions of interest instead, e.g., detecting regions having too many wireless sensors to avoid collision, or finding shopping areas featuring various merchandise or tourist attractions of different styles. Finding regions of interest in a map is a non-trivial problem and retrieving regions of arbitrary shapes poses particular challenges. In this paper, we present a novel region search algorithm, dense region search (DRS), and its extensions, to find regions of interest by estimating the density of locations containing the query keywords in the region. Experiments on both synthetic and real-world datasets demonstrate the effectiveness of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal, A., Imai, H., Katoh, N., et al., 1989. Finding k points with minimum spanning trees and related problems. Proc. 5th Annual Symp. on Computational Geometry, p.283–291. https://doi.org/10.1145/73833.73865

    Google Scholar 

  • Agrawal, R., Gehrke, J., Gunopulos, D., et al., 1998. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD Rec., 27(2): 94–105. https://doi.org/10.1145/276304.276314

    Article  Google Scholar 

  • Ankerst, M., Breunig, M.M., Kriegel, H.P., et al., 1999. Optics: ordering points to identify the clustering structure. SIGMOD Rec., 28(2): 49–60. https://doi.org/10.1145/304182.304187

    Article  Google Scholar 

  • Aurenhammer, F., 1991. Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv., 23(3): 345–405. https://doi.org/10.1145/116873.116880

    Article  Google Scholar 

  • Chen, L.S., Cong, G., Jensen, C.S., et al., 2013. Spatial keyword query processing: an experimental evaluation. Proc. VLDB Endowm., 6(3): 217–228. https://doi.org/10.14778/2535569.2448955

    Article  Google Scholar 

  • Chen, Y.Y., Suel, T., Markowetz, A., 2006. Efficient query processing in geographic web search engines. Proc. ACM SIGMOD Int. Conf. on Management of Data, p.277–288. https://doi.org/10.1145/1142473.1142505

    Google Scholar 

  • Cheng, C.H., Fu, A.W., Zhang, Y., 1999. Entropy-based subspace clustering for mining numerical data. Proc. 5th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.84–93. https://doi.org/10.1145/312129.312199

    Google Scholar 

  • Christoforaki, M., He, J., Dimopoulos, C., et al., 2011. Text vs. space:efficient geo-search query processing. Proc. 20th ACM Int. Conf. on Information and Knowledge Management, p.423–432. https://doi.org/10.1145/2063576.2063641

    Google Scholar 

  • Cong, G., Jensen, C.S., Wu, D.M., 2009. Efficient retrieval of the top-k most relevant spatial web objects. Proc. VLDB Endowm., 2(1): 337–348. https://doi.org/10.14778/1687627.1687666

    Article  Google Scholar 

  • Ester, M., Kriegel, H.P., Sander, J., et al., 1996. A densitybased algorithm for discovering clusters in large spatial databases with noise. Proc. 2nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.226–231.

    Google Scholar 

  • Fan, J., Li, G.L., Zhou, L.Z., et al., 2012. SEAL: spatiotextual similarity search. Proc. VLDB Endowm., 5(9): 824–835. https://doi.org/10.14778/2311906.2311910

    Article  Google Scholar 

  • Feige, U., Seltser, M., 1997. On the densest k-subgraph problem. Technical Report, the Weizmann Institute, Rehovot.

    Google Scholar 

  • Feige, U., Kortsarz, G., Peleg, D., 2001. The dense ksubgraph problem. Algorithmica, 29: 410–421. https://doi.org/10.1007/s004530010050

    Article  MathSciNet  Google Scholar 

  • Guo, D.S., Peuquet, D.J., Gahegan, M., 2003. ICEAGE: interactive clustering and exploration of large and highdimensional geodata. GeoInformatica, 7(3): 229–253. https://doi.org/10.1023/A:1025101015202

    Article  Google Scholar 

  • Hinneburg, A., Keim, D.A., 1999. Optimal grid-clustering: towards breaking the curse of dimensionality in highdimensional clustering. Proc. 25th Int. Conf. on Very Large Data Bases, p.506–517.

    Google Scholar 

  • Jones, C.B., Purves, R., Ruas, A., et al., 2002. Spatial information retrieval and geographical ontologies an overview of the SPIRIT project. Proc. 25th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.387–388. https://doi.org/10.1145/564437.564457

    Google Scholar 

  • Joshi, T., Joy, J., Kellner, T., et al., 2008. Crosslingual location search. Proc. 31st Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.211–218. https://doi.org/10.1145/1390334.1390372

    Google Scholar 

  • Khodaei, A., Shahabi, C., Li, C., 2010. Hybrid indexing and seamless ranking of spatial and textual features of web documents. LNCS, 6261: 450–466. https://doi.org/10.1007/978-3-642-15364-8_37

    Google Scholar 

  • Komusiewicz, C., Sorge, M., 2012. Finding dense subgraphs of sparse graphs. Proc. 7th Int. Conf. on Parameterized and Exact Computation, p.242–251. https://doi.org/10.1007/978-3-642-33293-7_23

    MATH  Google Scholar 

  • Lee, D.T., 1982. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput., 100(6): 478–487. https://doi.org/10.1109/tc.1982.1676031

    MathSciNet  MATH  Google Scholar 

  • Leung, K.W.T., Lee, D.L., Lee, W.C., 2011. CLR: a collaborative location recommendation framework based on co-clustering. Proc. 34th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.305–314. https://doi.org/10.1145/2009916.2009960

    Google Scholar 

  • Li, Z.S., Lee, K.C., Zheng, B.H., et al., 2011. IR-tree: an efficient index for geographic document search. IEEE Trans. Knowl. Data Eng., 23(4): 585–599. https://doi.org/10.1109/tkde.2010.149

    Article  Google Scholar 

  • Mai, H.T., Kim, J., Roh, Y.J., et al., 2013. STHist-C: a highly accurate cluster-based histogram for two and three dimensional geographic data points. GeoInformatica, 17(2): 325–352. https://doi.org/10.1007/s10707-012-0154-y

    Article  Google Scholar 

  • Ortega, E., Otera, I., Mancebo, S., 2014. TITIM GIS-tool: a GIS-based decision support system for measuring the territorial impact of transport infrastructures. Exp. Syst. Appl., 41(16): 7641–7652. https://doi.org/10.1016/j.eswa.2014.05.028

    Article  Google Scholar 

  • Saoussen, K., Sami, F., Takwa, T., et al., 2014. Tabu-based GIS for solving the vehicle routing problem. Exp. Syst. Appl., 41(14): 6483–6493. https://doi.org/10.1016/j.eswa.2014.03.028

    Article  Google Scholar 

  • Schikuta, E., 1996. Grid-clustering: an efficient hierarchical clustering method for very large data sets. Proc. 13th Int. Conf. on Pattern Recognition, p.101–105. https://doi.org/10.1109/icpr.1996.546732

    Google Scholar 

  • Shamos, M.I., Hoey, D., 1975. Closest-point problems. 16th Annual Symp. on Foundations of Computer Science, p.151–162. https://doi.org/10.1109/sfcs.1975.8

    Google Scholar 

  • Son, L.H., 2014. Optimizing municipal solid waste collection using chaotic particle swarm optimization in GIS based environments: a case study at Danang city, Vietnam. Exp. Syst. Appl., 41(18): 8062–8074. https://doi.org/10.1016/j.eswa.2014.07.020

    Article  Google Scholar 

  • Thomee, B., Rae, A., 2013. Uncovering locally characterizing regions within geotagged data. Proc. 22nd Int. Conf. on World Wide Web, p.1285–1296. https://doi.org/10.1145/2488388.2488500

    Google Scholar 

  • Vaid, S., Jones, C.B., Joho, H., et al., 2005. Spatio-textual indexing for geographical search on the web. Advances in Spatial and Temporal Databases, p.218–235. https://doi.org/10.1007/11535331_13

    Google Scholar 

  • Wei, L.Y., Zheng, Y., Peng, W.C., 2012. Constructing popular routes from uncertain trajectories. Proc. 18th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.195–203. https://doi.org/10.1145/2339530.2339562

    Google Scholar 

  • Wu, D.M., Yiu, M.L., Cong, G., et al., 2012. Joint top-k spatial keyword query processing. IEEE Trans. Knowl. Data Eng., 24(10): 1889–1903. https://doi.org/10.1109/icde.2011.5767861

    Article  Google Scholar 

  • Yuan, J., Zheng, Y., Xie, X., 2012. Discovering regions of different functions in a city using human mobility and POIs. Proc. 18th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.186–194. https://doi.org/10.1145/2339530.2339561

    Google Scholar 

  • Zhang, F.Z., Wilkie, D., Zheng, Y., et al., 2013a. Sensing the pulse of urban refueling behavior. Proc. ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing, p.13–22. https://doi.org/10.1145/2493432.2493448

    Google Scholar 

  • Zhang, Q., Kang, J.H., Gong, Y.Y., et al., 2013b. Map search via a factor graph model. Proc. 22nd ACM Int. Conf. on Information and Knowledge Management, p.69–78. https://doi.org/10.1145/2505515.2505674

    Google Scholar 

  • Zhou, Y.H., Xie, X., Wang, C., et al., 2005. Hybrid index structures for location-based web search. Proc. 14th ACM Int. Conf. on Information and Knowledge Management, p.155–162. https://doi.org/10.1145/1099554.1099584

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Wang.

Additional information

Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LZ13F020001), the National Natural Science Foundation of China (Nos. 61173185 and 61173186), the National Key Technology R&D Program of China (No. 2012BAI34B01), and the Hangzhou S&T Development Plan (No. 20150834M22)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Wang, C., Bu, Jj. et al. Finding map regions with high density of query keywords. Frontiers Inf Technol Electronic Eng 18, 1543–1555 (2017). https://doi.org/10.1631/FITEE.1600043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1600043

Keywords

CLC number

Navigation