Skip to main content
Log in

View-invariant human action recognition via robust locally adaptive multi-view learning

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Human action recognition is currently one of the most active research areas in computer vision. It has been widely used in many applications, such as intelligent surveillance, perceptual interface, and content-based video retrieval. However, some extrinsic factors are barriers for the development of action recognition; e.g., human actions may be observed from arbitrary camera viewpoints in realistic scene. Thus, view-invariant analysis becomes important for action recognition algorithms, and a number of researchers have paid much attention to this issue. In this paper, we present a multi-view learning approach to recognize human actions from different views. As most existing multi-view learning algorithms often suffer from the problem of lacking data adaptiveness in the nearest neighborhood graph construction procedure, a robust locally adaptive multi-view learning algorithm based on learning multiple local L1-graphs is proposed. Moreover, an efficient iterative optimization method is proposed to solve the proposed objective function. Experiments on three public view-invariant action recognition datasets, i.e., ViHASi, IXMAS, and WVU, demonstrate data adaptiveness, effectiveness, and efficiency of our algorithm. More importantly, when the feature dimension is correctly selected (i.e., >60), the proposed algorithm stably outperforms state-of-the-art counterparts and obtains about 6% improvement in recognition accuracy on the three datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashraf, A.B., Lucey, S., Chen, T., 2008. Learning patch correspondences for improved viewpoint invariant face recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1–8. [doi:10.1109/CVPR.2008. 4587754]

    Google Scholar 

  • Balakrishnama, S., Ganapathiraju, A., 1998. Linear Discriminant Analysis—a Brief Tutorial. Institute for Signal and Information Processing, Mississippi State University, USA.

    Google Scholar 

  • Balasubramanian, M., Schwartz, E.L., 2002. The isomap algorithm and topological stability. Science, 295(5552):7. [doi:10.1126/science.295.5552.9r]

    Article  Google Scholar 

  • Blum, A., Mitchell, T., 1998. Combining labeled and unlabeled data with co-training. Proc. 11th Annual Conf. on Computational Learning Theory, p.92–100. [doi:10.1145/ 279943.279962]

    Google Scholar 

  • Bobick, A.F., Davis, J.W., 2001. The recognition of human movement using temporal templates. IEEE Trans. Patt. Anal. Mach. Intell., 23(3):257–267. [doi:10.1109/34.910878]

    Article  Google Scholar 

  • Brémond, F., Thonnat, M., Zúñiga, M., 2006. Videounderstanding framework for automatic behavior recognition. Behav. Res. Methods, 38(3):416–426. [doi:10. 3758/BF03192795]

    Article  Google Scholar 

  • Candès, E., Romberg, J., 2005. l1-Magic: Recovery of Sparse Signals via Convex Programming.

    Google Scholar 

  • Chen, C., Zhuang, Y.T., Xiao, J., 2010. Silhouette representation and matching for 3D pose discrimination—a comparative study. Image Vis. Comput., 28(4):654–667. [doi:10.1016/jimavis.2009.10.008]

    Article  Google Scholar 

  • Chen, H.S., Chen, H.T., Chen, Y., et al., 2006. Human action recognition using star skeleton. Proc. 4th ACM Int. Workshop on Video Surveillance and Sensor Networks, p.171–178. [doi:10.1145/1178782.1178808]

    Chapter  Google Scholar 

  • Cheng, B., Yang, J., Yan, S., et al., 2010. Learning with l1-graph for image analysis. IEEE Trans. Image Process., 19(4):858–866. [doi:10.1109/TIP.2009.2038764] de Sa

    Article  MathSciNet  Google Scholar 

  • Virginia, R., 2005. Spectral clustering with two views. Proc. 22nd Annual Int. Conf. on Machine Learning, p.20–27.

    Google Scholar 

  • Donoho, D.L., 2006. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun. Pure Appl. Math., 59(6):797–829. [doi:10.1002/cpa.20132]

    Article  MATH  MathSciNet  Google Scholar 

  • Donoho, D.L., Elad, M., Temlyakov, V.N., 2006. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory, 52(1):6–18. [doi:10.1109/TIT.2005.860430]

    Article  MATH  MathSciNet  Google Scholar 

  • Feng, J.G., Xiao, J., 2013. View-invariant action recognition: a survey. J. Image Graph., 18(2):157–168 (in Chinese). [doi:10.11834/jig.20130205]

    Google Scholar 

  • Fu, Y., Xian, Y.M., 2001. Image classification based on multifeature and improved SVM ensemble. Comput. Eng., 37(21):196–198. [doi:10.3969/jissn.1000–3428.2011.21. 067]

    Google Scholar 

  • He, X.F., Cai, D., Yan, S., et al., 2005. Neighborhood preserving embedding. Proc. 10th IEEE Int. Conf. on Computer Vision, p.1208–1213. [doi:10.1109/ICCV.2005. 167]

    Google Scholar 

  • Jean, F., Bergevin, R., Albu, A.B., 2008. Trajectories normalization for viewpoint invariant gait recognition. Proc. 19th Int. Conf. on Pattern Recognition, p.1–4. [doi:10.1109/ICPR.2008.4761312]

    Google Scholar 

  • Junejo, I.N., Dexter, E., Laptev, I., et al., 2008. Cross-view action recognition from temporal self-similarities. Proc. 10th European Conf. on Computer Vision, p.293–306. [doi:10.1007/978–3-540–88688-4_22]

    Google Scholar 

  • Lee, D.D., Seung, H.S., 1999. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755): 788–791. [doi:10.1038/44565]

    Article  Google Scholar 

  • Lewandowski, M., Martinez-del-Rincon, J., Makris, D., et al., 2010. Temporal extension of Laplacian eigenmaps for unsupervised dimensionality reduction of time series. Proc. 20th Int. Conf. on Pattern Recognition, p.161–164. [doi:10.1109/ICPR.2010.48]

    Google Scholar 

  • Long, B., Yu, P.S., Zhang, Z.F., 2008. A general model for multiple view unsupervised learning. SIAM, p.822–833.

    Google Scholar 

  • Luo, Y., Wu, T., Hwang, J., 2003. Object-based analysis and interpretation of human motion in sports video sequences by dynamic Bayesian networks. Comput. Vis. Image Understand., 92(2–3):196–216. [doi:10.1016/jcviu.2003. 08.001]

    Article  Google Scholar 

  • Mao, J.L., 2013. Adaptive multi-view learning and its application to image classification. J. Comput. Appl., 33(7): 1955–1959 (in Chinese). [doi:10.11772/jissn.1001–9081. 2013.07.1955]

    Google Scholar 

  • Natarajan, P., Nevatia, R., 2008. View and scale invariant action recognition using multiview shape-flow models. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1–8. [doi:10.1109/CVPR.2008.4587716]

    Google Scholar 

  • Natarajan, P., Singh, V.K., Nevatia, R., 2010. Learning 3D action models from a few 2D videos for view invariant action recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.2006–2013. [doi:10.1109/ CVPR.2010.5539876]

    Google Scholar 

  • Parameswaran, V., Chellappa, R., 2006. View invariance for human action recognition. Int. J. Comput. Vis., 66(1): 83–101. [doi:10.1007/s11263–005-3671–4]

    Article  Google Scholar 

  • Rao, C., Yilmaz, A., Shah, M., 2002. View-invariant representation and recognition of actions. Int. J. Comput. Vis., 50(2):203–226. [doi:10.1023/A:1020350100748]

    Article  MATH  Google Scholar 

  • Raytchev, B., Kikutsugi, Y., Tamaki, T., et al., 2010. Classspecific low-dimensional representation of local features for viewpoint invariant object recognition. Proc. 10th Asian Conf. on Computer Vision, p.250–261. [doi:10. 1007/978–3-642–19318-7_20]

    Google Scholar 

  • Roh, M., Shin, H., Lee, S., 2010. View-independent human action recognition with volume motion template on single stereo camera. Patt. Recogn. Lett., 31(7):639–647. [doi:10.1016/jpatrec.2009.11.017]

    Article  Google Scholar 

  • Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323–2326. [doi:10.1126/science.290.5500. 2323]

    Article  Google Scholar 

  • Shen, B., Si, L., 2010. Nonnegative matrix factorization clustering on multiple manifolds. Proc. 24th AAAI Conf. on Artificial Intelligence, p.575–580.

    Google Scholar 

  • Srestasathiern, P., Yilmaz, A., 2008. View invariant object recognition. Proc. 19th Int. Conf. on Pattern Recognition, p.1–4. [doi:10.1109/ICPR.2008.4761238]

    Google Scholar 

  • Syeda-Mahmood, T., Vasilescu, A., Sethi, S., 2001. Recognizing action events from multiple viewpoints. Proc. IEEE Workshop on Detection and Recognition of Events in Video, p.64–72. [doi:10.1109/EVENT.2001.938868]

    Chapter  Google Scholar 

  • Tang, Y.F., Huang, Z.M., Huang, R.J., et al., 2011. Texture image classification based on multi-feature extraction and SVM classifier. Comput. Appl. Softw., 28(6):22–46 (in Chinese). [doi:10.3969/jissn.1000–386X.2011.06.006]

    Google Scholar 

  • Tian, C., Fan, G., Gao, X., 2008. Multi-view face recognition by nonlinear tensor decomposition. Proc. 19th Int. Conf. on Pattern Recognition, p.1–4. [doi:10.1109/ICPR.2008. 4761195]

    Google Scholar 

  • Wang, Y., Huang, K., Tan, T., 2007. Multi-view gymnastic activity recognition with fused HMM. Proc. 8th Asian Conf. on Computer Vision, p.667–677. [doi:10.1007/978–3-540–76386-4_63]

    Google Scholar 

  • Weinland, D., Ronfard, R., Boyer, E., 2006. Free viewpoint action recognition using motion history volumes. Comput. Vis. Image Understand., 104(2–3):249–257. [doi:10.1016/ jcviu.2006.07.013]

    Article  Google Scholar 

  • Weinland, D., Boyer, E., Ronfard, R., 2007. Action recognition from arbitrary views using 3D exemplars. Proc. IEEE 11th Int. Conf. on Computer Vision, p.1–7. [doi:10.1109/ ICCV.2007.4408849]

    Google Scholar 

  • Wen, J.H., Tian, Z., Lin, W., et al., 2011. Feature extraction based on supervised locally linear embedding for classi fication of hyperspectral images. J. Comput. Appl., 31(3):715–717. [doi:10.3724/SP.J.1087.2011.00715]

    Google Scholar 

  • Wold, S., Esbensen, K., Geladi, P., 1987. Principal component analysis. Chemometr. Intell. Lab. Syst., 2(1–3):37–52. [doi:10.1016/0169–7439(87)80084–9]

    Article  Google Scholar 

  • Wright, J., Yang, A.Y., Ganesh, A., et al., 2009. Robust face recognition via sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 31(2):210–227. [doi:10.1109/TPAMI. 2008.79]

    Article  Google Scholar 

  • Xia, T., Tao, D.C., Mei, T., et al., 2010. Multiview spectral embedding. IEEE Trans. Syst. Man Cybern., 40(6): 1438–1446. [doi:10.1109/TSMCB.2009.2039566]

    Article  Google Scholar 

  • Yan, P., Khan, S.M., Shah, M., 2008. Learning 4D action feature models for arbitrary view action recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1–7. [doi:10.1109/CVPR.2008.4587737]

    Google Scholar 

  • Yang, J., Jiang, Y.G., Hauptmann, A.G., et al., 2007. Evaluating bag-of-visual-words representations in scene classification. Proc. Int. Workshop on Multimedia Information Retrieval, p.197–206. [doi:10.1145/1290082.1290111]

    Chapter  Google Scholar 

  • Yilmaz, A., Shah, M., 2005. Actions as objects: a novel action representation. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.984–989. [doi:10.1109/CVPR.2005.58]

    Google Scholar 

  • Yu, H., Sun, G., Song, W., et al., 2005. Human motion recognition based on neural network. Proc. Int. Conf. on Communications, Circuits and Systems, p.979–982. [doi:10.1109/ICCCAS.2005.1495271]

    Google Scholar 

  • Zheng, S.E., Ye, S.Z., 2006. Semi-supervision and active relevance feedback algorithm for content-based image retrieval. Comput. Eng. Appl., S1:81–87 (in Chinese).

    Google Scholar 

  • Zhou, D., Burges, C.J.C., 2007. Spectral clustering and transductive learning with multiple views. Proc. 24th Int. Conf. on Machine Learning, p.1159–1166. [doi:10.1145/1273496.1273642]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-geng Feng.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61572431), the National Key Technology R&D Program (No. 2013BAH59F00), the Zhejiang Provincial Natural Science Foundation of China (No. LY13F020001), and the Zhejiang Province Public Technology Applied Research Projects, China (No. 2014C33090)

ORCID: Jia-geng FENG, http://orcid.org/0000-0003-4577-4520

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Jg., Xiao, J. View-invariant human action recognition via robust locally adaptive multi-view learning. Frontiers Inf Technol Electronic Eng 16, 917–929 (2015). https://doi.org/10.1631/FITEE.1500080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500080

Key words

CLC number

Navigation