Skip to main content
Log in

Fine-grained P2P traffic classification by simply counting flows

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The continuous emerging of peer-to-peer (P2P) applications enriches resource sharing by networks, but it also brings about many challenges to network management. Therefore, P2P applications monitoring, in particular, P2P traffic classification, is becoming increasingly important. In this paper, we propose a novel approach for accurate P2P traffic classification at a fine-grained level. Our approach relies only on counting some special flows that are appearing frequently and steadily in the traffic generated by specific P2P applications. In contrast to existing methods, the main contribution of our approach can be summarized as the following two aspects. Firstly, it can achieve a high classification accuracy by exploiting only several generic properties of flows rather than complicated features and sophisticated techniques. Secondly, it can work well even if the classification target is running with other high bandwidth-consuming applications, outperforming most existing host-based approaches, which are incapable of dealing with this situation. We evaluated the performance of our approach on a real-world trace. Experimental results show that P2P applications can be classified with a true positive rate higher than 97.22% and a false positive rate lower than 2.78%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auld, T., Moore, A.W., Gull, S.F., 2007. Bayesian neural networks for Internet traffic classification. IEEE Trans. Neur. Netw., 18(1):223–239. [doi:10.1109/TNN.2006.883010]

    Article  Google Scholar 

  • Ban, T., Guo, S., Eto, M., et al., 2012. A study on cost-effective P2P traffic classification. Proc. Int. Joint Conf. on Neural Networks, p.1–7. [doi:10.1109/IJCNN.2012.6252672]

    Google Scholar 

  • Basher, N., Mahanti, A., Mahanti, A., et al., 2008. A comparative analysis of web and peer-to-peer traffic. Proc. 17th Int. Conf. on World Wide Web, p.287–296. [doi:10.1145/1367497.1367537]

    Google Scholar 

  • Bermolen, P., Mellia, M., Meo, M., et al., 2011. Abacus: accurate behavioral classification of P2P-TV traffic. Comput. Netw., 55(6):1394–1411. [doi:10.1016/j.comnet.2010.12.004]

    Article  Google Scholar 

  • Chen, J.B., 2011. Fuzzy based approach for P2P file sharing detection. J. Internet Technol., 12(6):921–930.

    Google Scholar 

  • Dainotti, A., Pescapè, A., Claffy, K.C., 2012. Issues and future directions in traffic classification. IEEE Network, 26(1):35–40. [doi:10.1109/MNET.2012.6135854]

    Article  Google Scholar 

  • Dhamankar, R., King, R., 2007. Protocol Identification via Statistical Analysis (PISA). White Paper, Tipping Point.

    Google Scholar 

  • Este, A., Gringoli, F., Salgarelli, L., 2009. On the stability of the information carried by traffic flow features at the packet level. ACM SIGCOMM Comput. Commun. Rev., 39(3):13–18. [doi:10.1145/1568613.1568616]

    Article  Google Scholar 

  • Finamore, A., Mellia, M., Meo, M., et al., 2010. KISS: stochastic packet inspection classifier for UDP traffic. IEEE/ACM Trans. Netw., 18(5):1505–1515. [doi:10.1109/TNET.2010.2044046]

    Article  Google Scholar 

  • Gallagher, B., Iliofotou, M., Eliassi-Rad, T., et al., 2010. Link homophily in the application layer and its usage in traffic classification. Proc. IEEE INFOCOM, p.1–5. [doi:10.1109/INFCOM.2010.5462239]

    Google Scholar 

  • Gomes, J.V., Inácio, P.R.M., Pereira, M., et al., 2013. Detection and classification of peer-to-peer traffic: a survey. ACM Comput. Surv., 45(3), Article 30. [doi:10.1145/2480741.2480747]

    Google Scholar 

  • He, J., Yang, Y., Qiao, Y., et al., 2013. Accurate classification of P2P traffic by clustering flows. China Commun., 10(11):42–51. [doi:10.1109/CC.2013.6674209]

    Article  Google Scholar 

  • Huang, N.F., Jai, G.Y., Chao, H.C., 2008. Early identifying application traffic with application characteristics. Proc. IEEE Int. Conf. on Communications, p.5788–5792. [doi:10.1109/ICC.2008.1083]

    Google Scholar 

  • Hullár, B., Laki, S., Gyorgy, A., 2011. Early identification of peer-to-peer traffic. Proc. IEEE Int. Conf. on Communications, p.1–6. [doi:10.1109/icc.2011.5963023]

    Google Scholar 

  • Hurley, J., Garcia-Palacios, E., Sezer, S., 2011. Host-based P2P flow identification and use in real-time. ACM Trans. Web, 5(2), Article 7. [doi:10.1145/1961659.1961661]

    Google Scholar 

  • Iliofotou, M., Kim, H., Faloutsos, M., et al., 2011. Graption: a graph-based P2P traffic classification framework for the Internet backbone. Comput. Netw., 55(8):1909–1920. [doi:10.1016/j.comnet.2011.01.020]

    Article  Google Scholar 

  • Karagiannis, T., Papagiannaki, K., Faloutsos, M., 2005. BLINC: multilevel traffic classification in the dark. ACM SIGCOMM Comput. Commun. Rev., 35(4):229–240. [doi:10.1145/1090191.1080119]

    Article  Google Scholar 

  • Moore, A., Zuev, D., Crogan, M., 2005. Discriminators for Use in Flow-Based Classification. Technical Report, University of London, UK.

    Google Scholar 

  • Nguyen, T.T.T., Armitage, G., 2008. Clustering to assist supervised machine learning for real-time IP traffic classification. Proc. IEEE Int. Conf. on Communications, p.5857–5862. [doi:10.1109/ICC.2008.1095]

    Google Scholar 

  • Ohzahata, S., Hagiwara, Y., Terada, M., et al., 2005. A traffic identification method and evaluations for a pure P2P application. Proc. 6th Int. Workshop on Passive and Active Network Measurement, p.55–68. [doi:10.1007/978-3-540-31966-5_5]

    Chapter  Google Scholar 

  • Sandvine, 2014. Global Internet Phenomena Report 1H 2014. Technical Report. Sandvine Incorporated ULC, Waterloo, Ontario, Canada.

  • Tabatabaei, T.S., Adel, M., Karray, F., et al., 2012. Machine learning-based classification of encrypted Internet traffic. Proc. 8th Int. Conf. on Machine Learning and Data Mining in Pattern Recognition, p.578–592. [doi:10.1007/978-3-642-31537-4_45]

    Chapter  Google Scholar 

  • Valenti, S., Rossi, D., 2011. Identifying key features for P2P traffic classification. Proc. IEEE Int. Conf. on Communications, p.1–6. [doi:10.1109/icc.2011.5963018]

    Google Scholar 

  • Yang, D., Zhang, Y., Zhang, H., et al., 2009. Multi-factors oriented study of P2P Churn. Int. J. Commun. Syst., 22(9):1089–1103. [doi:10.1002/dac.1001]

    Article  Google Scholar 

  • Zhang, T., Ramakrishnan, R., Livny, M., 1996. BIRCH: an efficient data clustering method for very large databases. ACM SIGMOD Rec., 25(2):103–114. [doi:10.1145/235968.233324]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie He.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61170286 and 61202486)

ORCID: Jie HE, http://orcid.org/0000-0003-2244-7594

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Yang, Yx., Qiao, Y. et al. Fine-grained P2P traffic classification by simply counting flows. Frontiers Inf Technol Electronic Eng 16, 391–403 (2015). https://doi.org/10.1631/FITEE.1400267

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400267

Key words

Navigation