Skip to main content
Log in

A novel multimode process monitoring method integrating LDRSKM with Bayesian inference

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

A local discriminant regularized soft k-means (LDRSKM) method with Bayesian inference is proposed for multimode process monitoring. LDRSKM extends the regularized soft k-means algorithm by exploiting the local and non-local geometric information of the data and generalized linear discriminant analysis to provide a better and more meaningful data partition. LDRSKM can perform clustering and subspace selection simultaneously, enhancing the separability of data residing in different clusters. With the data partition obtained, kernel support vector data description (KSVDD) is used to establish the monitoring statistics and control limits. Two Bayesian inference based global fault detection indicators are then developed using the local monitoring results associated with principal and residual subspaces. Based on clustering analysis, Bayesian inference and manifold learning methods, the within and cross-mode correlations, and local geometric information can be exploited to enhance monitoring performances for nonlinear and non-Gaussian processes. The effectiveness and efficiency of the proposed method are evaluated using the Tennessee Eastman benchmark process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cai, L.F., Tian, X.M., Zhang, N., 2014. A kernel time structure independent component analysis method for nonlinear process monitoring. Chin. J. Chem. Eng., 22(11-12): 1243–1253. [doi:10.1016/j.cjche.2014.09.021]

    Article  Google Scholar 

  • Chiang, L.H., Russell, E.L., Braatz, R.D., 2000. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemometr. Intell. Lab. Syst., 50(2):243–252. [doi:10.1016/S0169-7439(99)00061-1]

    Article  Google Scholar 

  • Deng, X.G., Tian, X.M., 2013. Sparse kernel locality preserving projection and its application in nonlinear process fault detection. Chin. J. Chem. Eng., 21(2):163–170. [doi:10.1016/S1004-9541(13)60454-1]

    Article  MathSciNet  Google Scholar 

  • Deng, X.G., Tian, X.M., Chen, S., 2013) Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis. Chemometr. Intell. Lab. Syst., 127: 195–209. [doi:10.1016/j.chemolab.2013.07.001]

    Article  Google Scholar 

  • Dong, W.W., Yao, Y., Gao, F.R., 2012. Phase analysis and identification method for multiphase batch processes with partitioning multi-way principal component analysis (MPCA) model. Chin. J. Chem. Eng., 20(6):1121–1127. [doi:10.1016/S1004-9541(12)60596-5]

    Article  Google Scholar 

  • Downs, J.J., Vogel, E.F., 1993. A plant-wide industrial process control problem. Comput. Chem. Eng., 17(3):245–255. [doi:10.1016/0098-1354(93)80018-I]

    Article  Google Scholar 

  • Feital, T., Kruger, U., Dutra, J., et al., 2013. Modeling and performance monitoring of multivariate multimodal processes. AIChE J., 59(5):1557–1569. [doi:10.1002/aic.13953]

    Article  Google Scholar 

  • Ge, Z.Q., Song, Z.H., 2010. Maximum-likelihood mixture factor analysis model and its application for process monitoring. Chemometr. Intell. Lab. Syst., 102(1):53–61. [doi:10.1016/j.chemolab.2010.04.002]

    Article  Google Scholar 

  • Ge, Z.Q., Song, Z.H., 2012. A distribution-free method for process monitoring. Exp. Syst. Appl., 38(8):9812–9829. [doi:10.1016/j.eswa.2011.02.048]

    Google Scholar 

  • Ge, Z.Q., Zhang, M.G., Song, Z.H., 2010. Nonlinear process monitoring based on linear subspace and Bayesian inference. J. Process Contr., 20(5):676–688. [doi:10.1016/j.jprocont.2010.03.003]

    Article  Google Scholar 

  • Ge, Z.Q., Song, Z.H., Gao, F.R., 2013. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res., 52(10):3543–3562. [doi:10.1021/ie302069q]

    Article  MATH  Google Scholar 

  • Ghosh, K., Ramteke, M., Srinivasan, R., 2014) Optimal variable selection for effective statistical process monitoring. Comput. Chem. Eng., 60: 260–276. [doi:10.1016/j.compchemeng.2013.09.014]

    Article  Google Scholar 

  • He, X.F., Cai, D., Shao, Y.L., et al., 2011. Laplacian regularized Gaussian mixture model for data clustering. IEEE Trans. Knowl. Data Eng., 23(9):1406–1418. [doi:10.1109/TKDE.2010.259]

    Article  Google Scholar 

  • Howland, P., Wang, J., Park, H., 2006. Solving the small sample size problem in face recognition using generalized discriminant analysis. Patt. Recog., 39(2):277–287. [doi:10.1016/j.patcog.2005.06.013]

    Article  Google Scholar 

  • Jing, L.P., Ng, M.K., Huang, J.Z., 2007. An entropy weighting k-means algorithm for subspace clustering of highdimensional sparse data. IEEE Trans. Knowl. Data Eng., 19(8):1026–1041. [doi:10.1109/TKDE.2007.1048]

    Article  Google Scholar 

  • Kano, M., Nagao, K., Hasebe, S., et al., 2002. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem. Comput. Chem. Eng., 26(2):161–174. [doi:10.1016/S0098-1354(01)00738-4]

    Article  Google Scholar 

  • Kano, M., Fujioka, T., Tonomura, O., et al., 2007. Data-based and model-based blockage diagnosis for stacked microchemical processes. Chem. Eng. Sci., 62(4):1073–1080. [doi:10.1016/j.ces.2006.11.011]

    Article  Google Scholar 

  • Lee, D., Lee, J., 2007. Domain described support vector classifier for multi-classification problems. Patt. Recog., 40(1):41–51. [doi:10.1016/j.patcog.2006.06.008]

    Article  MATH  Google Scholar 

  • Lee, J., Kang, B., Kang, S., 2011. Integrating independent component analysis and local outlier factor for plant-wide process monitoring. J. Process Contr., 21(7):1011–1021. [doi:10.1016/j.jprocont.2011.06.004]

    Article  Google Scholar 

  • Liu, J.L., Cai, D., He, X.F., 2010. Gaussian mixture model with local consistency. Proc. 24th AAAI Conf. on Artificial Intelligence, p.512–517.

    Google Scholar 

  • Miao, A.M., Ge, Z.Q., Song, Z.H., et al., 2015) Nonlocal structure constrained neighborhood preserving embedding model and its application for fault detection. Chemometr. Intell. Lab. Syst., 142: 184–196. [doi:10.1016/j.chemolab.2015.01.010]

    Article  Google Scholar 

  • Miyamoto, S., Mukaidono, M., 1997. Fuzzy C-means as a regularization and maximum entropy approach. Proc. IFSA, p.86–92.

    Google Scholar 

  • Molina, G.D., Zumoffen, D.A.R., Basualdo, M.S., 2011. Plant-wide control strategy applied to the Tennessee Eastman process at two operating points. Comput. Chem. Eng., 35(10):2081–2097. [doi:10.1016/j.compchemeng.2010.11.006]

    Article  Google Scholar 

  • Ng, Y.S., Srinivasan, R., 2009. An adjoined multi-model approach for monitoring batch and transient operations. Comput. Chem. Eng., 33(4):887–902. [doi:10.1016/j.compchemeng.2008.11.014]

    Article  Google Scholar 

  • Perez, C.F.A., 2011. Fault Diagnosis with Reconstruction- Based Contributions for Statistical Process Monitoring. PhD Thesis, University of Southern California USA.

    Google Scholar 

  • Serradilla, J., Shi, J.Q., Morris, A.J., 2011. Fault detection based on Gaussian process latent variable models. Chemometr. Intell. Lab. Syst., 109(1):9–21. [doi:10.1016/j.chemolab.2011.07.003]

    Article  Google Scholar 

  • Shen, J.F., Bu, J.J., Ju, B., et al., 2012) Refining Gaussian mixture model based on enhanced manifold learning. Neurocomputing, 87: 19–25. [doi:10.1016/j.neucom.2012.01.029]

    Article  Google Scholar 

  • Song, B., Ma, Y.X., Shi, H.B., 2014) Multimode process monitoring using improved dynamic neighborhood preserving embedding. Chemometr. Intell. Lab. Syst., 135: 17–30. [doi:10.1016/j.chemolab.2014.03.013]

    Article  Google Scholar 

  • Tan, S.C., Lim, C.P., Rao, M.V.C., 2007. A hybrid neural network model for rule generation and its application to process fault detection and diagnosis. Eng. Appl. Artif. Intell., 20(2):203–213. [doi:10.1016/j.engappai.2006.06.007]

    Article  Google Scholar 

  • Teppola, P., Mujunen, S.P., Minkkinen, P., 1999. Adaptive fuzzy C-means clustering in process monitoring. Chemometr. Intell. Lab. Syst., 45(1-2):23–38. [doi:10.1016/S0169-7439(98)00087-2]

    Article  Google Scholar 

  • Tong, C.D., Palazoglu, A., Yan, X.F., 2013. An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding. J. Process Contr., 23(10):1497–1507. [doi:10.1016/j.jprocont.2013.09.017]

    Article  Google Scholar 

  • Venkatasubramanian, V., Rengaswamy, R., Yin, K., et al., 2003. A review of process fault detection and diagnosis: Part I: quantitative model-based methods. Comput. Chem. Eng., 27(3):293–311. [doi:10.1016/S0098-1354(02)00160-6]

    Article  Google Scholar 

  • Xie, L., Liu, X.Q., Zhang, J.M., et al., 2009. Non-Gaussian process monitoring based on NGPP-SVDD. Acta Autom. Sin., 35(1):107–112 (in Chinese).

    Article  MathSciNet  Google Scholar 

  • Xie, X., Shi, H.B., 2012. Multimode process monitoring based on fuzzy C-means in locality preserving projection subspace. Chin. J. Chem. Eng., 20(6):1174–1179. [doi:10.1016/S1004-9541(12)60604-1]

    Article  Google Scholar 

  • Xu, X., Xie, L., Wang, S., 2011. Multi-mode process monitoring method based on PCA mixture model. CIESC J., 62(3):743–752 (in Chinese).

    Google Scholar 

  • Yang, Y.H., Li, X., Liu, X.Z., et al., 2015) Wavelet kernel entropy component analysis with application to industrial process monitoring. Neurocomputing, 147: 395–402. [doi:10.1016/j.neucom.2014.06.045]

    Article  Google Scholar 

  • Yin, X.S., Chen, S.C., Hu, E.L., 2013) Regularized soft K-means for discriminant analysis. Neurocomputing, 103: 29–42. [doi:10.1016/j.neucom.2012.08.021]

    Article  Google Scholar 

  • Yu, J., 2012. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chem. Eng. Sci., 68(1):506–519. [doi:10.1016/j.ces.2011.10.011]

    Article  Google Scholar 

  • Zang, X., Vista Iv, F.P., Chong, K.T., 2014. Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(7):551–563. [doi:10.1631/jzus.C1300320]

    Article  Google Scholar 

  • Zhang, M., Ge, Z.Q., Song, Z.H., et al., 2011. Global-local structure analysis model and its application for fault detection and identification. Ind. Eng. Chem. Res., 50(11): 6837–6848. [doi:10.1021/ie102564d]

    Article  Google Scholar 

  • Zhang, S.J., Wang, Z.L., Qian, F., 2010. FS-SVDD based on LTSA and its application to chemical process monitoring. CIESC J., 61(8):1894–1900 (in Chinese).

    Google Scholar 

  • Zhang, Y.W., 2009. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chem. Eng. Sci., 64(5):801–811. [doi:10.1016/j.ces.2008.10.012]

    Article  Google Scholar 

  • Zhang, Y.W., Li, S., 2014. Modeling and monitoring of nonlinear multi-mode processes. Contr. Eng. Pract., 22: 194–204. [doi:10.1016/j.conengprac.2013.04.007]

    Article  Google Scholar 

  • Zhang, Y.W., An, J.Y., Li, Z.M., et al., 2013) Modeling and monitoring for handling nonlinear dynamic processes. Inform. Sci., 235: 97–105. [doi:10.1016/j.ins.2012.04.023]

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, Z.B., Wang, P.L., Song, Z.H., 2010. PCA-SVDD based fault detection and self-learning identification. J. Zhejiang Univ. (Eng. Sci.), 44(4):652–658 (in Chinese).

    Google Scholar 

  • Zhu, Z.B., Song, Z.H., Palazoglu, A., 2012. Process pattern construction and multi-mode monitoring. J. Process Contr., 22(1):247–262. [doi:10.1016/j.jprocont.2011.08. 002]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-jin Ren.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61272297)

ORCID: Shi-jin REN, http://orcid.org/0000-0002-8321-1879

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Sj., Liang, Y., Zhao, Xj. et al. A novel multimode process monitoring method integrating LDRSKM with Bayesian inference. Frontiers Inf Technol Electronic Eng 16, 617–633 (2015). https://doi.org/10.1631/FITEE.1400263

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400263

Keywords

Document code

CLC number

Navigation