Skip to main content

Advertisement

Log in

Enhancement of electrically conductive network structure in cementitious composites by polymer hybrid-coated multiwalled carbon nanotube

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Multiwalled carbon nanotubes (MWCNTs) could be excellent additives for electrically conductive cementitious composite (ECCC). Dispersion of MWCNTs in cement matrix is the key for promoting the electric pathways. In this work, the surface of MWCNT was modified with polyindole (PIn) and polyvinyl acetate (PVAc) concurrent admicellar polymerization (AP). The concurrent polymerization was carried out to create a bifunctional coating of a conducting polymer using PIn and a hydrophilic polymer using PVAc. The coating improves compatibility of the MWCNTs with the incipient aqueous cement matrix while facilitating conductivity of the final composite. The AP-coated MWCNTs were investigated for colloidal stability in water and electrical conductivity. It was found that using monomers of In and VAc at 0.4:1 ratio provided appropriate properties of good water dispersion (801 NTU) and high electrical conductivity (6.85 × 102 S/cm). To fabricate ECCC, adding 0.3 wt.% AP-coated MWCNTs in cement yielded an electrical conductivity of 8.56 × 10–4 S/cm, more than 20 times higher than bare MWCNTs at the same concentration. AP-coated MWCNTs also enhanced compressive strength of the cement at 66.85 MPa. Field Emission Scanning Electron Microscope (FESEM) images of cement composites showed dispersion of MWCNTs and network structures in the cement matrix consistent with electrically conducting pathways. Results established that AP-coated MWCNTs created a network for electrical flow in the cement at lower concentrations for an improved ECCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Makul N (2020) Advanced smart concrete—a review of current progress, benefits and challenges. J Clean Prod 274:122899. https://doi.org/10.1016/j.jclepro.2020.122899

    Article  Google Scholar 

  2. Lu Y, Li Z, Liao WI (2011) Damage monitoring of reinforced concrete frames under seismic loading using cement-based piezoelectric sensor. Mater Struct/Materiaux Construct 44:1273–1285. https://doi.org/10.1617/s11527-010-9699-0

    Article  Google Scholar 

  3. D’Alessandro A, Rallini M, Ubertini F et al (2016) Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for SHM applications. Cement Concr Compos 65:200–213. https://doi.org/10.1016/j.cemconcomp.2015.11.001

    Article  Google Scholar 

  4. Ez-zaki H, Riva L, Bellotto M et al (2021) Influence of cellulose nanofibrils on the rheology, microstructure and strength of alkali activated ground granulated blast-furnace slag: a comparison with ordinary Portland cement. Mater Struct 54:1–18

    Google Scholar 

  5. Rahman ML, Malakooti A, Ceylan H et al (2022) A review of electrically conductive concrete heated pavement system technology: from the laboratory to the full-scale implementation. Constr Build Mater 329:127139. https://doi.org/10.1016/j.conbuildmat.2022.127139

    Article  Google Scholar 

  6. Qiao G, Guo B, Ou J et al (2016) Numerical optimization of an impressed current cathodic protection system for reinforced concrete structures. Constr Build Mater 119:260–267. https://doi.org/10.1016/j.conbuildmat.2016.05.012

    Article  Google Scholar 

  7. Lee SJ, Ahn D, You I et al (2020) Wireless cement-based sensor for self-monitoring of railway concrete infrastructures. Autom Constr 119:103323. https://doi.org/10.1016/j.autcon.2020.103323

    Article  Google Scholar 

  8. Birgin HB, D’alessandro A, Laflamme S, Ubertini F (2020) Smart graphite–cement composite for roadway-integrated weigh-in-motion sensing. Sensors (Switzerland) 20:1–17. https://doi.org/10.3390/s20164518

    Article  Google Scholar 

  9. Lu SN, Xie N, Feng LC, Zhong J (2015) Applications of nanostructured carbon materials in constructions: the state of the art. J Nanomater. https://doi.org/10.1155/2015/807416

  10. Dong W, Li W, Tao Z, Wang K (2019) Piezoresistive properties of cement-based sensors: review and perspective. Constr Build Mater 203:146–163. https://doi.org/10.1016/j.conbuildmat.2019.01.081

    Article  Google Scholar 

  11. Hawreen A, Bogas JA (2018) Influence of carbon nanotubes on steel–concrete bond strength. Mater Struct/Materiaux Construct 51:1–16. https://doi.org/10.1617/s11527-018-1279-8

    Article  Google Scholar 

  12. Rajamohan V, Mathew AT (2019) Material and mechanical characterization of multi-functional carbon nanotube reinforced hybrid composite materials. Exp Tech 43:301–314

    Article  Google Scholar 

  13. Irshidat MR, Al-Saleh MH (2017) Repair of heat-damaged RC columns using carbon nanotubes modified CFRP. Mater Struct/Materiaux Construct 50:1–11. https://doi.org/10.1617/s11527-017-1034-6

    Article  Google Scholar 

  14. Borode AO, Ahmed NA, Olubambi PA (2019) Surfactant-aided dispersion of carbon nanomaterials in aqueous solution. Phys Fluids 31. https://doi.org/10.1063/1.5105380

  15. Luo J, Duan Z, Li H (2009) The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites. Phys Status Solidi (A) Appl Mater Sci 206:2783–2790. https://doi.org/10.1002/pssa.200824310

  16. Zhou Y, Fang Y, Ramasamy RP (2019) Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors (Switzerland) 19. https://doi.org/10.3390/s19020392

  17. Pongprayoon T, Yanumet N, O’Rear EA (2002) Admicellar polymerization of styrene on cotton. J Colloid Interface Sci 249:227–234. https://doi.org/10.1006/jcis.2002.8230

    Article  Google Scholar 

  18. Wu S, Xiong Q, Li X et al (2021) Properties of thermally conductive silicone rubbers filled with admicellar polymerized polypyrrole-coated Al2O3 particles. J Appl Polym Sci 138:1–9. https://doi.org/10.1002/app.50205

    Article  Google Scholar 

  19. Seneewong-Na-Ayutthaya M, Pongprayoon T, O’Rear EA (2016) Colloidal stability in water of modified carbon nanotube: comparison of different modification techniques. Macromol Chem Phys 217:2635–2646. https://doi.org/10.1002/macp.201600334

    Article  Google Scholar 

  20. Seneewong-Na-Ayutthaya M, Pongprayoon T (2015) Water-dispersible carbon nanotube prepared by non-destructive functionalization technique of admicellar polymerization. Diam Relat Mater 60:111–116. https://doi.org/10.1016/j.diamond.2015.10.030

    Article  Google Scholar 

  21. Poochai C, Pongprayoon T (2014) Enhancing dispersion of carbon nanotube in polyacrylonitrile matrix using admicellar polymerization. Colloids Surf A Physiochem Eng 456:67–74. https://doi.org/10.1016/j.colsurfa.2014.05.009

    Article  Google Scholar 

  22. Hanumansetty S, O’Rear E, Resasco DE (2015) Hydrophilic encapsulation of multi-walled carbon nanotubes using admicellar polymerization. Colloids Surf A Physiochem Eng 474:1–8. https://doi.org/10.1016/j.colsurfa.2015.02.047

    Article  Google Scholar 

  23. Wang S, Liu F, Gao C et al (2019) Enhancement of the thermoelectric property of nanostructured polyaniline/carbon nanotube composites by introducing pyrrole unit onto polyaniline backbone via a sustainable method. Chem Eng J 370:322–329. https://doi.org/10.1016/j.cej.2019.03.155

    Article  Google Scholar 

  24. Ramesan MT, Anjitha T, Parvathi K et al (2018) Nano zinc ferrite filler incorporated polyindole/poly(vinyl alcohol) blend: preparation, characterization, and investigation of electrical properties. Adv Polym Technol 37:3639–3649. https://doi.org/10.1002/adv.22148

    Article  Google Scholar 

  25. Ahn SH, Park JT, Kim JH et al (2011) Nanocomposite membranes consisting of poly(vinyl chloride) graft copolymer and surface-modified silica nanoparticles. Macromol Res 19:1195–1201. https://doi.org/10.1007/s13233-011-1116-1

    Article  Google Scholar 

  26. Tragoonwichian S, O’Rear EA, Yanumet N (2009) Double coating via repeat admicellar polymerization for preparation of bifunctional cotton fabric: ultraviolet protection and water repellence. Colloids Surf A Physiochem Eng Aspects 349:170–175. https://doi.org/10.1016/j.colsurfa.2009.08.014

    Article  Google Scholar 

  27. Eraldemir Ö, Sari B, Gök A, Ünal HI (2008) Synthesis and characterization of polyindole/poly(vinyl acetate) conducting composites. J Macromol Sci Part A Pure Appl Chem 45:205–211. https://doi.org/10.1080/10601320701839890

    Article  Google Scholar 

  28. Bhagat DJ, Dhokane GR (2015) Novel synthesis and DC electrical studies of polyindole/poly(vinyl acetate) composite films. Chem Phys Lett 619:27–31. https://doi.org/10.1016/j.cplett.2014.11.052

    Article  Google Scholar 

  29. Cespi M, Casettari L, Palmieri GF et al (2014) Rheological characterization of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) water dispersions. Colloid Polym Sci 292:235–241. https://doi.org/10.1007/s00396-013-3077-8

    Article  Google Scholar 

  30. Nateghi MR, Frahmand S, Mirjalili G (2014) Optical constants of electrochemically synthesized polyindole and poly(5-carboxilic acid indole). Polym Sci Ser A 56:459–464. https://doi.org/10.1134/S0965545X14040117

    Article  Google Scholar 

  31. Keithley (2001) Volume and surface resistivity measurements of insulating materials Using the 6517B Electrometer/high resistance meter volume and surface resistivity measurements of insulating materials using the 6517B electrometer/high resistance Meter APPLICATION NOTE. Application note 4

  32. Batool F, Bindiganavile V (2020) Evaluation of thermal conductivity of cement-based foam reinforced with polypropylene fibers. Mater Struct 53:11–13. https://doi.org/10.1617/s11527-020-1445-7

    Article  Google Scholar 

  33. Wahid Z, Latiff AI, Ahmad K (2017) Application of one-way ANOVA in completely randomized experiments. J Phys Conf Ser. IOP Publishing, Bristol, p 12017

  34. Vinod A, Vijay R, Manoharan S et al (2019) Characterization of raw and benzoyl chloride treated Impomea pes-caprae fibers and its epoxy composites. Mater Res Express 6:95307. https://doi.org/10.1088/2053-1591/ab2de2

    Article  Google Scholar 

  35. Dowdy S, Wearden S, Chilko D (2011) Statistics for research. Wiley, New York

    MATH  Google Scholar 

  36. Laurent C, Flahaut E, Peigney A (2010) The weight and density of carbon nanotubes versus the number of walls and diameter. Carbon 48:2994–2996. https://doi.org/10.1016/j.carbon.2010.04.010

    Article  Google Scholar 

  37. Issa CA, Assaad JJ (2017) Stability and bond properties of polymer-modified self-consolidating concrete for repair applications. Mater Struct/Materiaux et Construct 50. https://doi.org/10.1617/s11527-016-0921-6

  38. Mudila H, Prasher P, Kumar M et al (2019) Critical analysis of polyindole and its composites in supercapacitor application. Mater Renew Sustain Energy 8:1–19. https://doi.org/10.1007/s40243-019-0149-9

    Article  Google Scholar 

  39. Mozaffari S, Behdani J, Ghorashi SMB (2022) Synthesis of polyindole nanoparticles and its copolymers via emulsion polymerization for the application as counter electrode for dye-sensitized solar cells. Polym Bull 79:6777–6796

    Article  Google Scholar 

  40. Lakourj MM, Norouzian R-S, Esfandyar M (2020) Conducting nanocomposites of polypyrrole-co-polyindole doped with carboxylated CNT: synthesis approach and anticorrosion/antibacterial/antioxidation property. Mater Sci Eng B 261:114673

    Article  Google Scholar 

  41. Abbas NK, Habeeb MA, Algidsawi AJK (2015) Preparation of chloro penta amine cobalt(III) chloride and study of its influence on the structural and some optical properties of polyvinyl acetate. Int J Polymer Sci. https://doi.org/10.1155/2015/926789

  42. Talbi H, Ghanbaja J, Billaud D, Humbert B (1997) Vibrational properties and structural studies of doped and dedoped polyindole by FTi.r. Raman EEL Spectroscopies Polymer 38:2099–2106. https://doi.org/10.1016/S0032-3861(96)00759-8

    Article  Google Scholar 

  43. An S, Abdiryim T, Ding Y, Nurulla I (2008) A comparative study of the microemulsion and interfacial polymerization for polyindole. Mater Lett 62:935–938. https://doi.org/10.1016/j.matlet.2007.07.014

    Article  Google Scholar 

  44. Nayak SR, Mohana KNS, Hegde MB et al (2021) Functionalized multi-walled carbon nanotube/polyindole incorporated epoxy: an effective anti-corrosion coating material for mild steel. J Alloy Compd 856:158057. https://doi.org/10.1016/j.jallcom.2020.158057

    Article  Google Scholar 

  45. Elango M, Deepa M, Subramanian R, Mohamed Musthafa A (2018) Synthesis, characterization, and antibacterial activity of polyindole/Ag–Cuo nanocomposites by reflux condensation method. Polym Plast Technol Eng 57:1440–1451. https://doi.org/10.1080/03602559.2017.1410832

    Article  Google Scholar 

  46. Ouyang X, Koleva DA, Ye G, van Breugel K (2017) Insights into the mechanisms of nucleation and growth of C–S–H on fillers. Mater Struct/Materiaux Construct 50. https://doi.org/10.1617/s11527-017-1082-y

  47. Silvestro L, Jean Paul Gleize P (2020) Effect of carbon nanotubes on compressive, flexural and tensile strengths of Portland cement-based materials: a systematic literature review. Constr Build Mater 264:120237. https://doi.org/10.1016/j.conbuildmat.2020.120237

    Article  Google Scholar 

  48. Kalin M, Polajnar M (2014) The wetting of steel, DLC coatings, ceramics and polymers with oilsand water: the importance and correlations of surface energy, surfacetension, contact angle and spreading. Appl Surf Sci 293:97–108. https://doi.org/10.1016/j.apsusc.2013.12.109

    Article  Google Scholar 

  49. Zgueb R, Brichni A, Yacoubi N (2018) Improvement of the thermal properties of Sorel cements by polyvinyl acetate: consequences on physical and mechanical properties. Energy Build 169:1–8. https://doi.org/10.1016/j.enbuild.2018.03.007

    Article  Google Scholar 

  50. García-Macías E, D’Alessandro A, Castro-Triguero R et al (2017) Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites. Compos B Eng 108:451–469. https://doi.org/10.1016/j.compositesb.2016.10.025

    Article  Google Scholar 

  51. Mendoza ME, Campos AP, Xing Y et al (2020) Significant decrease of electrical resistivity by carbon nanotube networks in copper-MWCNTs nanocomposites: a detailed microstructure study. Diam Relat Mater 110:108083. https://doi.org/10.1016/j.diamond.2020.108083

    Article  Google Scholar 

  52. Bai S, Jiang L, Jiang Y et al (2020) Research on electrical conductivity of graphene/cement composites. Adv Cem Res 32:45–52. https://doi.org/10.1680/jadcr.16.00170

    Article  Google Scholar 

  53. Han B, Zhang L, Sun S et al (2015) Electrostatic self-assembled carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality. Compos A Appl Sci Manuf 79:103–115. https://doi.org/10.1016/j.compositesa.2015.09.016

    Article  Google Scholar 

  54. Zhang L, Li L, Wang Y et al (2020) Multifunctional cement-based materials modified with electrostatic self-assembled CNT/TiO2 composite filler. Constr Build Mater 238:117787. https://doi.org/10.1016/j.conbuildmat.2019.117787

    Article  Google Scholar 

  55. Tafesse M, Lee NK, Alemu AS et al (2021) Flowability and electrical properties of cement composites with mechanical dispersion of carbon nanotube. Constr Build Mater 293:123436. https://doi.org/10.1016/j.conbuildmat.2021.123436

    Article  Google Scholar 

  56. Joshi L, Singh AK, Prakash R (2012) Polyindole/ carboxylated-multiwall carbon nanotube composites produced by in-situ and interfacial polymerization. Mater Chem Phys 135:80–87. https://doi.org/10.1016/j.matchemphys.2012.04.026

    Article  Google Scholar 

  57. Park HM, Park SM, Lee SM et al (2019) Automated generation of carbon nanotube morphology in cement composite via data-driven approaches. Compos B Eng 167:51–62. https://doi.org/10.1016/j.compositesb.2018.12.011

    Article  Google Scholar 

  58. Quinteros L, García-Macías E, Martínez-Pañeda E (2022) Micromechanics-based phase field fracture modelling of CNT composites. Compos B Eng 236:109788. https://doi.org/10.1016/j.compositesb.2022.109788

    Article  Google Scholar 

  59. Saidi MZ, El Moujahid C, Pasc A et al (2021) Enhanced tribological properties of wind turbine engine oil formulated with flower-shaped MoS2 nano-additives. Colloids Surf A 620:126509. https://doi.org/10.1016/j.colsurfa.2021.126509

    Article  Google Scholar 

  60. Soliman EM, Kandil UF, Taha MMR (2012) The significance of carbon nanotubes on styrene butadiene rubber (SBR) and SBR modified mortar. Mater Struct/Materiaux Construct 45:803–816. https://doi.org/10.1617/s11527-011-9799-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Thailand Science Research and Innovation (TSRI) and SCG cement Co., Ltd., Thailand, for the “Research and Researchers for Industry (RRi) Fund”, contract number PHD 62I0033, which provides for Miss Suthisa Onthong’s Ph.D. study and her research. We wish to thank King Mongkut’s University of Technology North Bangkok for the financial support, contact number KMUTNB-62-KNOW-16, for larger scale reactor to prepare modified carbon nanotubes of cement test and the fun from the faculty of Engineering, contact number ENG-62-56 for the research of conductive MWCNT preparation. The authors would like to thank the Center of Innovation in Design and Engineering for Manufacturing (CoI-DEM), KMUTNB for supporting TGA and FTIR characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirawudh Pongprayoon.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 55 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onthong, S., O’Rear, E.A. & Pongprayoon, T. Enhancement of electrically conductive network structure in cementitious composites by polymer hybrid-coated multiwalled carbon nanotube. Mater Struct 55, 232 (2022). https://doi.org/10.1617/s11527-022-02070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-02070-z

Keywords

Navigation