Skip to main content
Log in

Effects of steel slag on the early hydration of hydraulic lime

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Steel slag inhibits the early hydration of cement, which limits its applications in cement-based materials. In this study, steel slag was used to prepare hydraulic lime, and steel slag was found to promote hydration in the hydraulic lime during the induction stage and inhibited hydration in the acceleration stage. As the steel slag content increased, hydration of hydraulic lime slowed and the yields of the hydration products C-S-H and Ca(OH)2 decreased. The pore sizes of steel slag-hydraulic lime pastes were principally distributed in the range of 100–4000 nm. Hydraulic lime with a steel slag content of 10% had the highest peak heat release rate during the acceleration stage. When the steel slag content was 10%, the porosity of the matrix decreased, the compactness increased, and the three- and seven-day compressive strengths of the hardened paste also increased in comparison to the paste without steel slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhuang S, Wang Q (2021) Inhibition mechanisms of steel slag on the early-age hydration of cement. Cem Concr Res 140:106283

    Article  Google Scholar 

  2. Jia R, Liu J, Jia R (2017) A study of factors that influence the hydration activity of mono-component CaO and bi-component CaO/Ca2Fe2O5 systems. Cem Concr Res 91:123–132

    Article  Google Scholar 

  3. Zareei SA, Ameri F, Bahrami N, Shoaei P, Moosaei HR, Salemi N (2019) Performance of sustainable high strength concrete with basic oxygen steel-making (BOS) slag and nano-silica. J Build Eng 25:100791

    Article  Google Scholar 

  4. World Steel Association (2018) Fact sheet on co-products. In: WorldsteelOrg, vol 2

  5. Zhao Y, Wu P, Qiu J, Guo Z, Tian Y, Sun X, Gu X (2022) Recycling hazardous steel slag after thermal treatment to produce a binder for cemented paste backfill. Powder Technol 395:652–662

    Article  Google Scholar 

  6. Dong Q, Wang G, Chen X, Tan J, Gu X (2021) Recycling of steel slag aggregate in portland cement concrete: an overview. J Clean Prod 282:124447

    Article  Google Scholar 

  7. Li L, Ling TC, Pan SY (2021) Environmental benefit assessment of steel slag utilization and carbonation: a systematic review. Sci Total Environ 806(Pt 1):150280

    Google Scholar 

  8. Santamaría A, Romera JM, Marcos I, Revilla-Cuesta V, Ortega-López V (2022) Shear strength assessment of reinforced concrete components containing EAF steel slag aggregates. J Build Eng 46:103730

    Article  Google Scholar 

  9. Martins ACP, Franco de Carvalho JM, Costa LCB, Andrade HD, de Melo TV, Ribeiro JCL, Pedroti LG, Peixoto RAF (2021) Steel slags in cement-based composites: an ultimate review on characterization, applications and performance. Constr Build Mater 291:123265

    Article  Google Scholar 

  10. Zhang T, Yu Q, Wei J, Li J, Zhang P (2011) Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Resour Conserv Recycl 56(1):48–55

    Article  Google Scholar 

  11. Muhmood L, Vitta S, Venkateswaran D (2009) Cementitious and pozzolanic behavior of electric arc furnace steel slags. Cem Concr Res 39(2):102–109

    Article  Google Scholar 

  12. Li J, Yu Q, Wei J, Zhang T (2011) Structural characteristics and hydration kinetics of modified steel slag. Cem Concr Res 41(3):324–329

    Article  Google Scholar 

  13. Zhang T, Zhang H, Dai S, Huang D, Wang W (2021) Variation of viscosity and crystallization properties of synthetic ferronickel waste slag with Al2O3 content. Ceram Int 47(16):22918–22923

    Article  Google Scholar 

  14. Fang K, Wang D, Zhao J, Zhang M (2021) Utilization of ladle furnace slag as cement partial replacement: influences on the hydration and hardening properties of cement. Constr Build Mater 299:124265

    Article  Google Scholar 

  15. Qian GR, Suna DD (2002) Autoclave properties of kirschsteinite-based steel slag. Cem Concr Res 32(9):1377–1382

    Article  Google Scholar 

  16. Shi CJ, Hu SF (2003) Cementitious properties of ladle slag fines under autoclave curing conditions. Cem Concr Res 33(11):1851–1856

    Article  Google Scholar 

  17. Wang Q, Yan P, Feng J (2011) A discussion on improving hydration activity of steel slag by altering its mineral compositions. J Hazard Mater 186:1070–1075

    Article  Google Scholar 

  18. Murri AN, Rickard WDA, Bignozzi MC, Riessen AV (2013) High temperature behaviour of ambient cured alkali-activated materials based on ladle slag. Cem Concr Res 43:51–61

    Article  Google Scholar 

  19. Qiana G, Sun DD, Tay JH, Lai Z, Xu G (2002) Autoclave properties of kirschsteinitebased steel slag. Cem Concr Res 32:1377–1382

    Article  Google Scholar 

  20. Shi Y, Chen HY, Wang J, Feng QM (2015) Preliminary investigation on the pozzolanic activity of superfine steel slag. Constr Build Mater 82:227–234

    Article  Google Scholar 

  21. Wang Q, Yang JW, Yan PY (2013) Cementitious properties of super-fine steel slag. Powder Technol 245:35–39

    Article  Google Scholar 

  22. Zhu H, Ma M, He X, Zheng Z, Su Y, Yang J, Zhao H (2021) Effect of wet-grinding steel slag on the properties of Portland cement: an activated method and rheology analysis. Constr Build Mater 286:122823

    Article  Google Scholar 

  23. Pontikes Y, Kriskova L, Cizer Ö, Jones PT, Blanpain B (2013) On a new hydraulic binder from stainless steel converter slag. Adv Cem Res 25:2–31

    Article  Google Scholar 

  24. Salman M, Cizer Ö, Pontikes Y, Snellings R, Vandewalle L, Blanpain B, Van Balen K (2015) Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions. J Hazard Mater 286:21–219

    Article  Google Scholar 

  25. Wang S, Yu L, Huang L, Wu K, Yang Z (2021) Incorporating steel slag in the production of high heat resistant FA based geopolymer paste via pressure molding. J Clean Prod 325:129265

    Article  Google Scholar 

  26. Lu T-H, Chen Y-L, Shih P-H, Chang J-E (2018) Use of basic oxygen furnace slag fines in the production of cementitious mortars and the effects on mortar expansion. Constr Build Mater 167:768–774

    Article  Google Scholar 

  27. Huo B, Li B, Huang S, Chen C, Zhang Y, Banthia N (2020) Hydration and soundness properties of phosphoric acid modified steel slag powder. Constr Build Mater 254:119319

    Article  Google Scholar 

  28. Zhang H, Zhang XY (2019) Preparation of modified porous steel slag/rubber composite materials and its properties. Chin J Eng 41:88–95

    Article  Google Scholar 

  29. Callebaut K, Elsen J, Balen KV et al (2001) Nineteenth century hydraulic restoration mortars in the Saint Michael’s Church (Leuven, Belgium): natural hydraulic lime or cement. Cem Concr Res 31(3):397–403

    Article  Google Scholar 

  30. Válek J, Halem EV, Viani A, Pérez-Estébanez M, Ševčík R, Šašek P (2014) Determination of optimal burning temperature ranges for production of natural hydraulic limes. Constr Build Mater 66(1):771–780

    Article  Google Scholar 

  31. Luo K, Li J, Lu Z, Wang L, Deng X, Hou L, Jiang J (2021) Preparation and performances of foamed hydraulic lime. Constr Build Mater 290:123244

    Article  Google Scholar 

  32. EN BS 459–1:2015 (2015) Building lime. Part 1: Definitions, specifications and conformity criteria, Brussels

  33. Shi UC, Qian J (2000) High performance cementing materials from industrial slags a review. Resour Conserv Recycl 29(3):195–207

    Article  Google Scholar 

  34. Zajac M, Skocek J, Lothenbach B, Haha MB (2020) Late hydration kinetics: indications from thermodynamic analysis of pore solution data. Cem Concr Res 129:105975

    Article  Google Scholar 

  35. Srivastava S, Jacklin R, Snellings R, Barker R, Spooren J, Cool P (2022) Experiments and modelling to understand FeCO3 cement formation mechanism: time-evolution of CO2-species, dissolved-Fe, and pH during CO2-induced dissolution of Fe(0). Constr Build Mater 345:128281

    Article  Google Scholar 

  36. Luo K, Lu ZY, Jiang J, Niu Y (2019) Effect of nano-SiO2 on early hydration of natural hydraulic lime. Constr Build Mater 216:119–127

    Article  Google Scholar 

  37. Luo K, Li J, Han Q, Lu ZY, Deng X, Hou L, Niu YH, Jiang J, Xu X, Cai P (2020) Influence of nano-SiO2 and carbonation on the performance of natural hydraulic lime mortars. Constr Build Mater 235:117411

    Article  Google Scholar 

  38. Kong X, Emmerling S, Pakusch J, Rueckel M, Nieberle J (2015) Retardation effect of styrene-acrylate copolymer latexes on cement hydration. Cem Concr Res 75:23–41

    Article  Google Scholar 

  39. Moschner G, Lothenbach B, Figi R, Kretzschmar R (2009) Influence of citric acid on the hydration of Portland cement. Cem Concr Res 39:275–282

    Article  Google Scholar 

  40. Thomas NL, Birchall JD (1983) The retarding action of sugars on cement hydration. Cem Concr Res 13:830–842

    Article  Google Scholar 

  41. Berodier E, Scrivener K (2014) Understanding the filler effect on the nucleation and growth of C-S-H. J Am Ceram Soc 97:3764–3773

    Article  Google Scholar 

  42. Zhou J, Ye G, van Breugel K (2006) Hydration of Portland cement blended with blast furnace slag at early age, In: Marchand J, Bissonnette B, Gagne R, Jolin M, Paradis F (eds), Second international symposium on advances in concrete through science and engineering, Quebec

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Sichuan Province (2022NSFSC1135), Sichuan Science and Technology Program (No.2019ZDZX0024). The authors would like to thank Shu Xiang from Shiyanjia Lab (www.shiyanjia.com) for the language editing service.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Li or Zhongyuan Lu.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, K., Peng, K., Li, J. et al. Effects of steel slag on the early hydration of hydraulic lime. Mater Struct 55, 228 (2022). https://doi.org/10.1617/s11527-022-02063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-02063-y

Keywords

Navigation