Skip to main content
Log in

Damage in cement pastes exposed to MgCl2 solutions

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Magnesium chloride (MgCl2) reacts with cement pastes resulting in calcium leaching and the formation of calcium oxychloride, which can cause damage. This paper examines the damage in different cement pastes exposed to MgCl2 solutions. Volume change measurement and low temperature differential scanning calorimetry are used to characterize the formation of calcium oxychloride. Thermogravimetric analysis and X-ray fluorescence are used to quantify calcium leaching from Ca(OH)2 and C-S-H. The ball-on-three-balls test is used to quantify the flexural strength reduction. Calcium oxychloride can form in cement pastes exposed to MgCl2 solutions with a (Ca(OH)2/MgCl2) molar ratio larger than 1. As the MgCl2 concentration increases, two-stages of flexural strength reduction are observed in the plain cement pastes, with the initial reduction primarily due to calcium leaching from Ca(OH)2 and the additional reduction due to the calcium leaching from C-S-H (at MgCl2 concentrations above 17.5 wt%). For the cement pastes containing fly ash, there is a smaller reduction in flexural strength as less Ca(OH)2 is leached, while no additional reduction is observed at high MgCl2 concentrations due to the greater stability of C-S-H with a lower Ca/Si ratio. The addition of fly ash can mitigate damage in the presence of MgCl2 solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yehia S, Tuan CY (1998) Bridge deck deicing. In: Transportation conference proceedings. Iowa State University, Ames, pp 51–57

  2. Fischel M (2001) Evaluation of selected deicers based on a review of the literature CDOT-DTD-R-2001-15. Colorado Department of Transportation, Denver

    Google Scholar 

  3. Mussato BT, Gepraegs OK, Farnden G (2004) Relative effects of sodium chloride and magnesium chloride on reinforced concrete: state of the art. Transp Res Rec 1866:59–66. https://doi.org/10.3141/1866-08

    Article  Google Scholar 

  4. Page CL, Short NR, El Tarras A (1981) Diffusion of chloride ions in hardened cement pastes. Cem Concr Res 11(3):395–406. https://doi.org/10.1016/0008-8846(81)90111-3

    Article  Google Scholar 

  5. Nielsen EP, Geiker MR (2003) Chloride diffusion in partially saturated cementitious material. Cem Concr Res 33(1):133–138. https://doi.org/10.1016/s0008-8846(02)00939-0

    Article  Google Scholar 

  6. Qiao C, Ni W, Wang Q, Weiss J (2018) Chloride diffusion and wicking in concrete exposed to NaCl and MgCl2 solutions. J Mater Civ Eng 30(3):04018015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002192

    Article  Google Scholar 

  7. Nagataki S, Otsuki N, Wee T-H, Nakashita K (1993) Condensation of chloride ion in hardened cement matrix materials and on embedded steel bars. ACI Mater J 90(4):323–332

    Google Scholar 

  8. Raupach M (2006) Models for the propagation phase of reinforcement corrosion—an overview. Mater Corros 57(8):605–613. https://doi.org/10.1002/maco.200603991

    Article  Google Scholar 

  9. Thomas MDA, Bamforth PB (1999) Modelling chloride diffusion in concrete: effect of fly ash and slag. Cem Concr Res 29(4):487–495. https://doi.org/10.1016/s0008-8846(98)00192-6

    Article  Google Scholar 

  10. Tang L (2008) Engineering expression of the ClinConc model for prediction of free and total chloride ingress in submerged marine concrete. Cem Concr Res 38(8–9):1092–1097. https://doi.org/10.1016/j.cemconres.2008.03.008

    Article  Google Scholar 

  11. Tumidajski PJ, Chan GW (1996) Durability of high performance concrete in magnesium brine. Cem Concr Res 26(4):557–565. https://doi.org/10.1016/0008-8846(96)00034-8

    Article  Google Scholar 

  12. Peterson K, Julio-Betancourt G, Sutter L, Hooton RD, Johnston D (2013) Observations of chloride ingress and calcium oxychloride formation in laboratory concrete and mortar at 5 °C. Cem Concr Res 45:79–90. https://doi.org/10.1016/j.cemconres.2013.01.001

    Article  Google Scholar 

  13. Mesbah A, François M, Cau-dit-Coumes C, Frizon F, Filinchuk Y, Leroux F, Ravaux J, Renaudin G (2011) Crystal structure of Kuzel’s salt 3CaO·Al2O3·1/2CaSO4·1/2CaCl2·11H2O determined by synchrotron powder diffraction. Cem Concr Res 41(5):504–509. https://doi.org/10.1016/j.cemconres.2011.01.015

    Article  Google Scholar 

  14. Birnin-Yauri UA, Glasser FP (1998) Friedel’s salt, Ca2Al(OH)6(Cl, OH)·2H2O: its solid solutions and their role in chloride binding. Cem Concr Res 28(12):1713–1723. https://doi.org/10.1016/S0008-8846(98)00162-8

    Article  Google Scholar 

  15. Bilinski H, MatkoviĆ B, MaŽUraniĆ C, ŽUniĆ TB (1984) The formation of magnesium oxychloride phases in the systems MgO–MgCl2–H2O and NaOH–MgCl2–H2O. J Am Ceram Soc 67(4):266–269. https://doi.org/10.1111/j.1151-2916.1984.tb18844.x

    Article  Google Scholar 

  16. Dehua D, Chuanmei Z (1996) The effect of aluminate minerals on the phases in magnesium oxychloride cement. Cem Concr Res 26(8):1203–1211. https://doi.org/10.1016/0008-8846(96)00101-9

    Article  Google Scholar 

  17. Sutter L, Peterson K, Touton S, Van Dam T, Johnston D (2006) Petrographic evidence of calcium oxychloride formation in mortars exposed to magnesium chloride solution. Cem Concr Res 36(8):1533–1541. https://doi.org/10.1016/j.cemconres.2006.05.022

    Article  Google Scholar 

  18. Bernard E, Lothenbach B, Le Goff F, Pochard I, Dauzères A (2017) Effect of magnesium on calcium silicate hydrate (C-S-H). Cem Concr Res 97:61–72. https://doi.org/10.1016/j.cemconres.2017.03.012

    Article  Google Scholar 

  19. Gaitero JJ, Campillo I, Guerrero A (2008) Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cem Concr Res 38(8–9):1112–1118. https://doi.org/10.1016/j.cemconres.2008.03.021

    Article  Google Scholar 

  20. Haga K, Shibata M, Hironaga M, Tanaka S, Nagasaki S (2005) Change in pore structure and composition of hardened cement paste during the process of dissolution. Cem Concr Res 35(5):943–950. https://doi.org/10.1016/j.cemconres.2004.06.001

    Article  Google Scholar 

  21. Haga K, Sutou S, Hironaga M, Tanaka S, Nagasaki S (2005) Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste. Cem Concr Res 35(9):1764–1775. https://doi.org/10.1016/j.cemconres.2004.06.034

    Article  Google Scholar 

  22. Carde C, François R (1999) Modelling the loss of strength and porosity increase due to the leaching of cement pastes. Cement Concr Compos 21(3):181–188. https://doi.org/10.1016/S0958-9465(98)00046-8

    Article  Google Scholar 

  23. Carde C, François R (1997) Effect of the leaching of calcium hydroxide from cement paste on mechanical and physical properties. Cem Concr Res 27(4):539–550. https://doi.org/10.1016/S0008-8846(97)00042-2

    Article  Google Scholar 

  24. Heukamp FH, Ulm FJ, Germaine JT (2001) Mechanical properties of calcium-leached cement pastes: triaxial stress states and the influence of the pore pressures. Cem Concr Res 31(5):767–774. https://doi.org/10.1016/S0008-8846(01)00472-0

    Article  Google Scholar 

  25. Carde C, François R, Torrenti J-M (1996) Leaching of both calcium hydroxide and C-S-H from cement paste: modeling the mechanical behavior. Cem Concr Res 26(8):1257–1268. https://doi.org/10.1016/0008-8846(96)00095-6

    Article  Google Scholar 

  26. Farnam Y, Wiese A, Bentz D, Davis J, Weiss J (2015) Damage development in cementitious materials exposed to magnesium chloride deicing salt. Constr Build Mater 93:384–392. https://doi.org/10.1016/j.conbuildmat.2015.06.004

    Article  Google Scholar 

  27. Qiao C, Suraneni P, Weiss J (2018) Flexural strength reduction of cement pastes exposed to CaCl2 solutions. Cement Concr Compos 86:297–305. https://doi.org/10.1016/j.cemconcomp.2017.11.021

    Article  Google Scholar 

  28. Cao Y, Zavaterri P, Youngblood J, Moon R, Weiss J (2015) The influence of cellulose nanocrystal additions on the performance of cement paste. Cement Concr Compos 56:73–83. https://doi.org/10.1016/j.cemconcomp.2014.11.008

    Article  Google Scholar 

  29. Todd NT (2015) Assessing risk reduction of high early strength concrete mixtures. Purdue University, West Lafayette

    Google Scholar 

  30. Qiao C, Suraneni P, Tsui Chang M, Weiss J (2018) The influence of calcium chloride on flexural strength of cement-based materials. In: Hordijk DA, Luković M (eds) High tech concrete: where technology and engineering meet: proceedings of the 2017 fib symposium, held in Maastricht, The Netherlands, June 12–14, 2017. Springer International Publishing, Cham, pp 2041–2048. https://doi.org/10.1007/978-3-319-59471-2_233

    Google Scholar 

  31. Qiao C, Suraneni P, Weiss J (2017) Measuring volume change due to calcium oxychloride phase transformation in a Ca(OH)2–CaCl2–H2O system. Adv Civ Eng Mater 6(1):157–169. https://doi.org/10.1520/ACEM20160065

    Article  Google Scholar 

  32. Fu T, Deboodt T, Ideker JH (2012) Simple procedure for determining long-term chemical shrinkage for cementitious systems using improved standard chemical shrinkage test. J Mater Civ Eng 24(8):989–995. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000486

    Article  Google Scholar 

  33. Monical J, Unal E, Barrett T, Farnam Y, Weiss WJ (2016) Reducing joint damage in concrete pavements. Transp Res Rec J Transp Res Board 2577:17–24. https://doi.org/10.3141/2577-03

    Article  Google Scholar 

  34. AASHTO (2017) Standard method of test for quantifying calcium oxychloride amounts in cement pastes exposed to deicing salts. AASHTO, Washington

    Google Scholar 

  35. Börger A, Supancic P, Danzer R (2004) The ball on three balls test for strength testing of brittle discs: part II: analysis of possible errors in the strength determination. J Eur Ceram Soc 24(10–11):2917–2928. https://doi.org/10.1016/j.jeurceramsoc.2003.10.035

    Article  Google Scholar 

  36. Shi Z, Geiker MR, De Weerdt K, Østnor TA, Lothenbach B, Winnefeld F, Skibsted J (2017) Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends. Cem Concr Res 95:205–216. https://doi.org/10.1016/j.cemconres.2017.02.003

    Article  Google Scholar 

  37. Kim T, Olek J (2012) Effects of sample preparation and interpretation of thermogravimetric curves on calcium hydroxide in hydrated pastes and mortars. Transp Res Rec J Transp Res Board 2290:10–18. https://doi.org/10.3141/2290-02

    Article  Google Scholar 

  38. Chang MT, Suraneni P, Isgor OB, Trejo D, Weiss WJ (2017) Using X-ray fluorescence to assess the chemical composition and resistivity of simulated cementitious pore solutions. Int J Adv Eng Sci Appl Math 9(3):136–143. https://doi.org/10.1007/s12572-017-0181-x

    Article  Google Scholar 

  39. Qiao C, Suraneni P, Weiss J (2018) Phase diagram and volume change of the Ca(OH)2–CaCl2–H2O system for varying Ca(OH)2/CaCl2 molar ratios. J Mater Civ Eng 30(2):04017281. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002145

    Article  Google Scholar 

  40. Stillinger FH (1995) A topographic view of supercooled liquids and glass formation. Science 267(5206):1935. https://doi.org/10.1126/science.267.5206.1935

    Article  Google Scholar 

  41. Qiao C, Suraneni P, Weiss J (2018) Damage in cement pastes exposed to NaCl solutions. Constr Build Mater 171:120–127. https://doi.org/10.1016/j.conbuildmat.2018.03.123

    Article  Google Scholar 

  42. Shi Z, Geiker MR, Lothenbach B, De Weerdt K, Garzón SF, Enemark-Rasmussen K, Skibsted J (2017) Friedel’s salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution. Cement Concr Compos 78:73–83. https://doi.org/10.1016/j.cemconcomp.2017.01.002

    Article  Google Scholar 

  43. Patnaik P (2003) Handbook of inorganic chemicals, vol 529. McGraw-Hill, New York

    Google Scholar 

  44. Brown ME (2001) Introduction to thermal analysis: techniques and applications, vol 1. Springer, Berlin

    Google Scholar 

  45. Richardson IG (1999) The nature of C-S-H in hardened cements. Cem Concr Res 29(8):1131–1147. https://doi.org/10.1016/S0008-8846(99)00168-4

    Article  Google Scholar 

  46. Richardson IG (2004) Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem Concr Res 34(9):1733–1777. https://doi.org/10.1016/j.cemconres.2004.05.034

    Article  Google Scholar 

  47. Faucon P, Le Bescop P, Adenot F, Bonville P, Jacquinot JF, Pineau F, Felix B (1996) Leaching of cement: study of the surface layer. Cem Concr Res 26(11):1707–1715. https://doi.org/10.1016/S0008-8846(96)00157-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Ready Mix Concrete Association (NRMCA), the Portland Cement Association (PCA), MIT Concrete Sustainability Hub and a pooled fund by the Oklahoma Department of Transportation (TP-5(297)) “Improving Specifications to Resist Frost Damage in Modern Concrete”. The authors also acknowledge insightful discussions with Dr. Vahid Jafari Azad and Professor O. Burkan Isgor at Oregon State University. The authors also acknowledge the hard work by Myo Thiha Zaw for B3B specimen preparation.

Funding

This study was funded by the National Ready Mix Concrete Association (NRMCA), the Portland Cement Association (PCA), MIT Concrete Sustainability Hub and a pooled fund by the Oklahoma Department of Transportation (TP-5(297)) “Improving Specifications to Resist Frost Damage in Modern Concrete”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Weiss.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, C., Suraneni, P., Tsui Chang, M. et al. Damage in cement pastes exposed to MgCl2 solutions. Mater Struct 51, 74 (2018). https://doi.org/10.1617/s11527-018-1191-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-018-1191-2

Keywords

Navigation