Skip to main content
Log in

Multiple linear regression model for the assessment of bond strength in corroded and non-corroded steel bars in structural concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

With the growth and ageing of the stock of existing structures, structural assessment and retrofitting are fast acquiring a significant role in the construction industry. The benefits of upgrading existing reinforced concrete (RC) structures or extending their service life and of ensuring greater durability in designs for de novo construction have led to a need to include deterioration as a factor in structural safety models. Bond between reinforcing steel and concrete is of cardinal importance in this respect. The present paper proposes a unified formulation for assessing bond strength in corroded and non-corroded steel bars, and an associated model to accommodate the effect of transverse pressure where appropriate. The formulation is the result of applying multiple linear regression analysis to a database built from the findings of over 650 bond tests on corroded and non-corroded reinforcing steel reported in the literature. The data collected include a wide range of variables affecting bond strength, such as bar diameter, concrete compressive strength, concrete cover, anchorage length, confinement ratio and cross-sectional loss. A number of statistical criteria are used to compare the proposed formulation to the other bond strength assessment models, including the fib Model Code 2010 proposal for corroded steel bars. Further to the statistical tests conducted, the model proposed can be usefully applied to assess the structural safety of corroded RC members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coccia S, Imperatore S, Rinaldi Z (2014) Influence of corrosion on the bond strength of steel rebars in concrete. Mater Struct. doi:10.1617/s11527-014-0518-x

    Google Scholar 

  2. Fischer C (2012) Influences of reinforcement corrosion on bond between steel and concrete (in German). Ph.D. Thesis, Stuttgart University

  3. Yalciner H, Eren O, Sensoy S (2012) An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level. Cem Concr Res 42:643–655. doi:10.1016/j.cemconres.2012.01.003

    Article  Google Scholar 

  4. CEB (1982) Bulletin d’Information 151. Bond action and bond behaviour of reinforcement. CEB, Paris

    Google Scholar 

  5. FIB (2000) Fib Bulletin 10. Bond of reinforcement in concrete. FIB (International federation for structural concrete), Lausanne

    Google Scholar 

  6. CEN (2004) Eurocode 2: design of concrete structures—part 1-1: general rules and rules for buildings. CEN, Brussels

  7. FIB (2013) Fib Model Code for concrete structures 2010. FIB (International Federation of Structural Concrete), Lausanne

  8. FIB (2014) Fib Bulletin 72. Bond and anchorage of embedded reinforcement: background to the fib Model Code for concrete structures 2010. FIB (International federation for structural concrete), Lausanne

  9. Tepfers R (1973) A theory of bond applied to overlapped tensile reinforcement splices for deformed bars. Ph.D., Chalmers University of Technology

  10. Schenkel M (1998) Bond behaviour of reinforcement with reduced Concrete Cover (Zum Verbundverhalten von Bewehrung bei kleiner Betondeckung—in German). Ph.D., Swiss Federal Institute of Technology Zürich (ETHZ)

  11. Shima H, Chou LL, Okamura H (1987) Bond characteristics in post-yield range of deformed bars. Proc Jpn Soc Civ Eng (JSCE) 6:79–94

    Google Scholar 

  12. Mathey RG, Watstein D (1961) Investigation of bond in beam and pull-out specimens with high yield-strength deformed bars. J Am Concr Inst 57:1071–1090

    Google Scholar 

  13. Metelli G, Plizzari GA (2014) Influence of the relative rib area on bond behaviour. Mag Concr Res 66:277–294. doi:10.1680/macr.13.00198

    Article  Google Scholar 

  14. Cairns J (2015) Bond and anchorage of embedded steel reinforcement in fib Model Code 2010. Struct Concr 16:45–55. doi:10.1002/suco.201400043

    Article  Google Scholar 

  15. Prieto M, Tanner P, Andrade C, Fernandez Ruiz M (2013) Experimental and numerical study of bond response in structural concrete with corroded steel bars. Paper presented at the IABSE Conference on Assessment, Upgrading and refurbishment of Infrastructures, Rotterdam

  16. Tondolo F (2015) Bond behaviour with reinforcement corrosion. Constr Build Mater 93:926–932. doi:10.1016/j.conbuildmat.2015.05.067

    Article  Google Scholar 

  17. Rodriguez J, Ortega LM, Casal J, Díez JM (1995) The residual service life of reinforced concrete structures. Task 3.2. Relation between corrosion and bond deterioration. Geocisa, Madrid

  18. Al-Sulaimani GJ, Kaleemullah M, Basunbul IA, Rasheeduzzafar (1990) Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members. ACI Struct J 87:220–231

    Google Scholar 

  19. Almusallam AA, Al-Gahtani AS, Aziz AR, Rasheeduzzafar (1996) Effect of reinforcement corrosion on bond strength. Constr Build Mater 10:123–129. doi:10.1016/0950-0618(95)00077-1

    Article  Google Scholar 

  20. Alonso MDG (1995) Aportaciones al comportamiento resistente de estructuras de hormigón armado afectadas por la corrosión de sus armaduras (Contributions to the resistance behaviour of reinforced concrete structures affected by corrosion—in Spanish). Universidad Politécnica de Madrid (UPM), Madrid

  21. Auyeung Y, Balaguru P, Chung L (2000) Bond behavior of corroded reinforcement bars. ACI Struct J 97:214–220

    Google Scholar 

  22. Chamberlin SJ (1956) Spacing of reinforcement in beams. Proc J Am Concr Inst 53:113–134

    Google Scholar 

  23. Ezeldin AS, Balaguru PN (1989) Bond behaviour of normal and high strength fibre reinforced concrete. Am Concr Inst Mater J 86:515–524

    Google Scholar 

  24. Fang C, Lundgren K, Chen L, Zhu C (2004) Corrosion influence on bond in reinforced concrete. Cem Concr Res 34:2159–2167. doi:10.1016/j.cemconres.2004.04.006

    Article  Google Scholar 

  25. Ferguson PM, Thomson JN (1962) Development length of high strength reinforcing bars in bond. Proc J ACI 59:887–922

    Google Scholar 

  26. Hanjari KZ, Coronelli D (2010) Anchorage capacity of corroded reinforcement. Eccentric pull-out tests. Chalmers University of Technology, Göteborg

    Google Scholar 

  27. Lee HS, Noguchi T, Tomosawa F (2002) Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion. Cem Concr Res 32:1313–1318. doi:10.1016/S0008-8846(02)00783-4

    Article  Google Scholar 

  28. Molina M (2005) Comportamiento de estructuras de hormigón armado con una deficiente transferencia de tensiones hormigón-acero (Structural behaviour of reinforced concrete structures with a deficient transfer of stresses between concrete and steel—in Spanish). Ph.D. Thesis, Universidad Politécnica de Madrid (UPM)

  29. Tang D (2007) Influence of chloride-induced corrosion cracks on the strength of reinforced concrete (Master Thesis). Master Thesis, RMIT University

  30. Andrade C, Alonso C (1996) Corrosion rate monitoring in the laboratory and on-site. Constr Build Mater 10:315–328. doi:10.1016/0950-0618(95)00044-5

    Article  Google Scholar 

  31. Mancini G, Tondolo F (2014) Effect of bond degradation due to corrosion—a literature survey. Struct Concr 15:408–418. doi:10.1002/suco.201300009

    Article  Google Scholar 

  32. Prieto M (2014) Estudio de la adherencia de armaduras corroídas y su influencia en la capacidad resistente de elementos de hormigón armado (Study of bond with corroded steel and its influence in the resistance of reinforced concrete elements—in Spanish). Ph.D. Thesis, Universidad Politécnica de Madrid (UPM)

  33. Prieto M, Tanner P, Andrade C (2014) Bond assessment of corroded steel bars in structural concrete. Paper presented at the 37th IABSE Symposium on Engineering for Progress, Nature and People, Madrid, 2014

  34. IBM SPSS Statistics for Windows (2012) IBM SPSS statistics for Windows, 21 edn. IBM Corp, Armonk, NY

  35. Peña D (2002) Regresión y diseño de experimentos (Regression and design of experiments—in Spanish). Alianza Editorial, Madrid

    Google Scholar 

  36. IETcc (2001) Contecvet manual. A validated users manual for assessing the residual service life of concrete structures. Instituto Eduardo Torroja (IETcc), Madrid. www.ietcc.csic.es

  37. ACHE (2012) Monografía M-19. Modelos lineales aplicados al hormigón estructural (Linear models applied to structural concrete—in Spanish). Asociación científico-técnica del hormigón estructural (ACHE), Madrid

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Prieto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prieto, M., Tanner, P. & Andrade, C. Multiple linear regression model for the assessment of bond strength in corroded and non-corroded steel bars in structural concrete. Mater Struct 49, 4749–4763 (2016). https://doi.org/10.1617/s11527-016-0822-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-016-0822-8

Keywords

Navigation