Skip to main content
Log in

Comparison of existing chloride ingress models within concretes exposed to seawater

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Numerous models to predict chloride ingress within concretes for different environmental conditions (immersed in seawater, located in the tidal zone or exposed to sea spray) have already been developed. Thanks to a benchmark, the objective of this paper is to contribute to the choice of a reliable engineering model for predicting chloride ingress in the case of saturated conditions. This study focus on a comparison between various physico-chemical models which rely on different approaches to account for transport phenomena and binding of chloride ions onto the cementitious matrix. The authors draw special attention to models using a limited number of input data (3 or 4): accessible-to-water porosity (\(\phi _{\text{w}}\)), effective chloride diffusion coefficient (\(D_{\text{Cl}^-}\)) and one or two parameter(s) characterizing the physical binding of ions Cl. They are determined through the analysis of two simple and repeatable experimental tests: \(\phi _{\text{w}}\) is measured directly by hydrostatic weighing and the other parameters are fitted by inverse analysis performed of a total chloride content (tcc) profile at a given exposure time. An application of the method and a comprehensive comparison between predicted chloride profiles and experimental data (tcc profiles at other ages than the one used for the fitting and free chloride concentration profiles) have been carried out for two mortars and seven concretes exposed to laboratory or in-situ conditions. The performance of the studied models is assessed thanks to statistical tools and recommendations are pointed out for the development of new numerical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. EN 206–1 Concrete part 1: specification, performance, production and conformity. CEN (2000)

  2. EN 1992-1-1 Eurocode 2: design of concrete structures— Part 1–1: general rules and rules for buildings (2004)

  3. Alexander M, Ballim Y, Stanish K (2008) A framework for use of durability indexes in performance-based design and specifications for reinforced concrete structures. Mater Struct 41(5):921–936. doi:10.1617/s11527-007-9295-0

    Article  Google Scholar 

  4. Baroghel-Bouny V (2007) Concrete design for a given structure service life-durability management with regards to reinforcement corrosion and alkali-silica reaction. State-of-the-art and guide for the implementation of a predictive performance approach based upon durability indicators. Scientific and Technical Documents of AFGC (AFGC, Paris, issue in French: 2004 & issue in English: 2007)

  5. Bickley J, Hooton RD, Hover KC (2006) Preparation of a performance-based specification for cast-in-place concrete. Technical report, RMC Research Foundation

  6. Khitab A (2005) Modelling of ionic transfers in saturated porous media: application to the penetration of chlorides into cementitious materials. Ph.D. thesis, INSA Toulouse (in French)

  7. Tang L (2005) Guidelines for practical use of methods for testing the resistance of concrete to chloride ingress. EU-Project CHLORTEST (EU funded research Project under 5FP GROWTH programme), SP Swedish National, Testing and Research Institute, Boras, p 271

  8. Martín-Pérez B, Zibara H, Hooton R, Thomas M (2000) A study of the effect of chloride binding on service life predictions. Cem Concr Res 30(8):1215–1223. doi:10.1016/S0008-8846(00)00339-2

    Article  Google Scholar 

  9. Nguyen TQ, Baroghel-Bouny V, Dangla P (2006) Prediction of chloride ingress into saturated concrete on the basis of a multi-species model by numerical calculations. Comput Concr 3:401–422

    Article  Google Scholar 

  10. Justnes H (1998) A review of chloride binding in cementitious systems. Nord Concr Res Publ 21:48–63

    Google Scholar 

  11. Ramachandran V (1971) Possible states of chloride in the hydration of tricalcium silicate in the presence of calcium chloride. Mater Struct 4(1):3–12. doi:10.1007/BF02473926

    Google Scholar 

  12. Arya C, Buenfeld N, Newman J (1990) Factors influencing chloride-binding in concrete. Cem Concr Res 20(2):291–300. doi:10.1016/0008-8846(90)90083-A

    Article  Google Scholar 

  13. Suryavanshi A, Scantlebury J, Lyon S (1996) Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate. Cem Concr Res 26(5):717–727. doi:10.1016/S0008-8846(96)85009-5

    Article  Google Scholar 

  14. Tang L, Nilsson LO (1993) Chloride binding capacity and binding isotherms of OPC pastes and mortars. Cem Concr Res 23(2):247–253. doi:10.1016/0008-8846(93)90089-R

    Article  Google Scholar 

  15. Tritthart J (1989) Chloride binding in cement II. the influence of the hydroxide concentration in the pore solution of hardened cement paste on chloride binding. Cem Concr Res 19(5):683–691. doi:10.1016/0008-8846(89)90039-2

    Article  Google Scholar 

  16. Kari O, Elakneswaran Y, Nawa T, Puttonen J (2013) A model for a long-term diffusion of multispecies in concrete based on ion-cement-hydrate interaction. J Mater Sci 48(12):4243–4259. doi:10.1007/s10853-013-7239-3

    Article  Google Scholar 

  17. Balonis M, Lothenbach B, Le Saout G, Glasser FP (2010) Impact of chloride on the mineralogy of hydrated portland cement systems. Cem Concr Res 40(7):1009–1022. doi:10.1016/j.cemconres.2010.03.002. http://www.sciencedirect.com/science/article/pii/S000888461000058X

  18. Johannesson B, Yamada K, Nilsson LO, Hosokawa Y (2007) Multi-species ionic diffusion in concrete with account to interaction between ions in the pore solution and the cement hydrates. Mater Struct 40(7):651–665. doi:10.1617/s11527-006-9176-y

    Article  Google Scholar 

  19. Paz-García JM, Johannesson B, Ottosen LM, Ribeiro AB, Rodríguez-Maroto JM (2013) Computing multi-species chemical equilibrium with an algorithm based on the reaction extents. Comput Chem Eng 58: 135–143. doi: 10.1016/j.compchemeng.2013.06.013. http://www.sciencedirect.com/science/article/pii/S009813541300207X

  20. Engelund S, Edvardsen C, Mohr L (2000) General guidelines for durability design and redesign. Report R15, EU-Brite EuRam III Project BE95-1347 DuraCrete. Probabilistic performance based durability design of concrete structures

  21. Tang L (2008) Engineering expression of the ClinConc model for prediction of free and total chloride ingress in submerged marine concrete. Cem Concr Res 38(89):1092–1097. doi:10.1016/j.cemconres.2008.03.008. http://www.sciencedirect.com/science/article/pii/S0008884608000720

  22. Truc O, Ollivier JP, Nilsson LO (2000) Numerical simulation of multi-species transport through saturated concrete during a migration test MsDiff code. Cem Concr Res 30(10):1581–1592. doi:10.1016/S0008-8846(00)00305-7

    Article  Google Scholar 

  23. Marchand J, Samson E, Maltais Y, Lee R, Sahu S (2002) Predicting the performance of concrete structures exposed to chemically aggressive environment—field validation. Mater Struct 35(10):623–631. doi:10.1007/BF02480355

    Article  Google Scholar 

  24. Samson E, Marchand J, Beaudoin J (1999) Describing ion diffusion mechanisms in cement-based materials using the homogenization technique. Cem Concr Res 29(8):1341–1345. doi:10.1016/S0008-8846(99)00101-5

    Article  Google Scholar 

  25. Yuan Q, Shi C, De Schutter G, Audenaert K, Deng D (2009) Chloride binding of cement-based materials subjected to external chloride environment a review. Constr Build Mater 23(1):1–13. doi:10.1016/j.conbuildmat.2008.02.004. http://www.sciencedirect.com/science/article/pii/S095006180800055X

  26. Aramata A, Bockris J, White R, Conway B (1997) Modern aspects of electrochemistry. Plenum Press, New York

    Google Scholar 

  27. Zhang T, Gjorv OE (1995) Effect of ionic interaction in migration testing of chloride diffusivity in concrete. Cem Concr Res 25(7):1535–1542. doi:10.1016/0008-8846(95)00147-5

    Article  Google Scholar 

  28. Wang H, Gillott J (1991) Mechanism of alkali-silica reaction and the significance of calcium hydroxide. Cem Concr Res 21(4):647–654. doi:10.1016/0008-8846(91)90115-X

    Article  Google Scholar 

  29. Baroghel-Bouny V, Thiéry M, Wang X (2013) Performance-based assessment of durability and prediction of RC structure service life: transport properties as input data for physical models. Mater Struct 47:1–23. doi:10.1617/s11527-013-0144-z

    Google Scholar 

  30. Baroghel-Bouny V, Wang X, Thiéry M, Saillio M, Barberon F (2012) Prediction of chloride binding isotherms of cementitious materials by analytical model or numerical inverse analysis. Cem Concr Res 42(9):1207–1224. doi:10.1016/j.cemconres.2012.05.008. http://www.sciencedirect.com/science/article/pii/S0008884612001251

  31. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313. doi:10.1093/comjnl/7.4.308

    Article  MATH  Google Scholar 

  32. Nguyen TS (2006) Influence of the nature of the binder and the temperature on the transport of chlorides in cementitious materials. Ph.D. thesis, INSA Toulouse (in French)

  33. Baroghel-Bouny V (1994) Characterization of cement pastes and concretes-methods, analysis, interpretations. Ph.D. thesis, ENPC LCPC Publications, Paris (in French)

  34. Codina M, Caudit Coumes C, Le Bescop P, Verdier J, Ollivier J (2008) Design and characterization of low-heat and low-alkalinity cements. Cem Concr Res 38(4):437–448. doi:10.1016/j.cemconres.2007.12.002. http://www.sciencedirect.com/science/article/pii/S0008884607003092

  35. Tang L, Andersen A (2000) Chloride ingress data from five years fild exposure in a Swedish marine environment. In C. Andrade, & J. Kropp (Eds.), Second International RILEM Workshop on Testing and Modelling the Chloride Ingress into Concrete. RILEM Publications SARL, pp 105–119

  36. De Larrard F, Baroghel-Bouny V (2000) Ageing of concrete in natural environments: an experiment for the 21st century. I : general considerations and initial mechanical properties of tested concrete, vol 225. Bulletin des laboratoires des Ponts et Chaussées (in French)

  37. Nilsson LO, Sandberg P, Poulsen E, Tang L, Andersen A, Frederiksen JM (1997) Hetek, A system for estimation of chloride ingress into concrete. Theoritical background. Report No. 83. The Danish Road Directorate. Copenhagen

  38. Chaussadent T, Arliguie G (1999) AFREM test procedures concerning chlorides in concrete: extraction and titration methods. Mater Struct 32(3):230–234. doi:10.1007/BF02481520

    Article  Google Scholar 

  39. XP P18–462:2012 : Testing hardened concrete—chloride ions migration accelerated test in non-steady-state conditions—determining the apparent chloride ions diffusion coefficient (2012)

  40. XP P18–461:2012 : Testing hardened concrete—chloride ions migration accelerated test in steady-state conditions—determining the effective chloride ions diffusion coefficient (2012)

  41. Truc O, Ollivier J, Carcassè s M (2000) A new way for determining the chloride diffusion coefficient in concrete from steady state migration test. Cem Concr Res 30(2):217–226. doi:10.1016/S0008-8846(99)00232-X

    Article  Google Scholar 

  42. Baroghel-Bouny V, Kinomura K, Thiéry M, Moscardelli S (2011) Easy assessment of durability indicators for service life prediction or quality control of concretes with high volumes of supplementary cementitious materials. Cem Concr Compos 33(8):832–847. doi:10.1016/j.cemconcomp.2011.04.007. http://www.sciencedirect.com/science/article/pii/S0958946511000801

  43. Saillio M (2012) Physical and chemical binding in non-carbonated and carbonated cement materials. Influence on the ion transport. Ph.D. thesis, Université Paris-Est-Marne-la-Vallée (in French)

  44. Saillio M, Baroghel-Bouny V, Barberon F (2014) Chloride binding in sound and carbonated cementitious materials with various types of binder. Constr Build Mater 68(0):82–91. doi: 10.1016/j.conbuildmat.2014.05.049. http://www.sciencedirect.com/science/article/pii/S0950061814005339

  45. Francy O (1998) Modelling of chloride ions ingress in partially water saturated mortars. Ph.D. thesis, Paul Sabatier University, Toulouse (in French)

  46. Nielsen EP, Geiker MR (2003) Chloride diffusion in partially saturated cementitious material. Cem Concr Res 33(1):133–138. doi:10.1016/S0008-8846(02)00939-0

    Article  Google Scholar 

  47. Henocq P (2005) Modeling of the ion interactions to the surface of the calcium silicate hydrate. Ph.D. thesis, Cergy-Pontoise University (in French)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Pradelle.

Description of ion adsorption onto C-S-H [16]

Description of ion adsorption onto C-S-H [16]

Table 7 resumes the considered equations describing the competitive adsorption onto solid matrix. The authors add the hypothesis that the capacity of solid matrix to adsorb is constant for all ions. Constants of adsorption reaction are assumed to be equal to those of adsorption reactions onto C-S-H. Such hypothesis is equally used by some authors of the literature [47, 16]. Thus, analytical relationships (see Eq. 13) between the content of bound ions and the free concentration of ions can be written. First, let us note the denominator D and the vector \(\mathbf {C}\) as:

$$\begin{aligned} D = &1+K_{\text{OH}}c_{{\text{OH}}^-} + (K_{\text{Ca}}+K_{{\text{CaSO}}_4}c_{{\text{SO}}_4^{2-}} + K_{\text{CaCl}}c_{{\text{Cl}}^-}) \frac{c_{{\text{Ca}}^{2+}}}{c_{{\text{H}}^{+}}} \nonumber \\&\qquad + \frac{{\text{K}}_{\text{Na}}c_{{\text{Na}}^+}+{\text{K}}_{\text{K}}c_{{\text{K}}^+}}{c_{{\text{H}}^{+}}}+{\text{K}}_{\text{Cl}}c_{{\text{Cl}}^-} \end{aligned}$$
(11)
$$\begin{aligned} \mathbf {C} = \left( c_{{\text{Cl}}^-}~c_{{\text{OH}}^-}~c_{{\text{SO}}_4^{2-}}~c_{{\text{Na}}^+}~c_{{\text{K}}^+}~c_{{\text{Ca}}^{2+}} \right) \end{aligned}$$
(12)

Analytical relationships are then:

$$\begin{aligned} {\left\{ \begin{array}{ll} s_{\text{OH}} = f^{\text{OH}}_{\text{Kari}}(\mathbf {C}) = C_{\text{ads}} \frac{{\text{K}}_{\text{OH}}c_{{\text{OH}}^-}}{D} \\ s_{\text{Cl}} = f^{\text{Cl}}_{\text{Kari}}(\mathbf {C}) = C_{\text{ads}} \frac{({\text{K}}_{\text{CaCl}}\frac{c_{{\text{Ca}}^{2+}}}{c_{{\text{H}}^{+}}} + {\text{K}}_{\text{Cl}})c_{{\text{Cl}}^-}}{D}\\ s_{\text{Ca}} = f^{\text{Ca}}_{\text{Kari}}(\mathbf {C}) = C_{\text{ads}} \frac{({\text{K}}_{\text{Ca}}+{\text{K}}_{{\text{CaSO}}_4}c_{{\text{SO}}_4^{2-}} + {\text{K}}_{\text{CaCl}}c_{{\text{Cl}}^-})c_{{\text{Ca}}^{2+}}}{D~c_{{\text{H}}^{+}}} \\ s_{{\text{SO}}_4 } = f^{{\text{SO}}_4}_{\text{Kari}}(\mathbf {C}) = C_{\text{ads}} \frac{{\text{K}}_{{\text{CaSO}}_4}c_{{\text{SO}}_4^{2-}} c_{{\text{Ca}}^{2+}}}{D~c_{{\text{H}}^{+}}} \\ s_{\text{Na}} = f^{\text{Na}}_{\text{Kari}}(\mathbf {C}) = C_{\text{ads}} \frac{{\text{K}}_{\text{Na}}c_{{\text{Na}}^+}}{D~c_{{\text{H}}^{+}}} \\ s_{\text{K}} = f^{\text{K}}_{\text{Kari}}(\mathbf {C}) = C_{\text{ads}} \frac{{\text{K}}_{\text{K}}c_{{\text{K}}^+}}{D~c_{{\text{H}}^{+}}} \\ \end{array}\right. } \end{aligned}$$
(13)

where the parameter \(C_{\text{ads}}\) has to be calibrated.

Table 7 The equilibrium constants K for physical adsorption onto C-S-H [16]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradelle, S., Thiéry, M. & Baroghel-Bouny, V. Comparison of existing chloride ingress models within concretes exposed to seawater. Mater Struct 49, 4497–4516 (2016). https://doi.org/10.1617/s11527-016-0803-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-016-0803-y

Keywords

Navigation