Skip to main content
Log in

Modeling of fluid leakage through multi-cracked RC structural elements using a numerical probabilistic cracking approach

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

An experimental and finite element study on water leakage through reinforced concrete structural elements is presented in the paper. A macroscopic probabilistic approach is used to predict structural transfer properties evolution induced by concrete cracking. In this model, material heterogeneity is taken into account by randomly distributing the mechanical elementary properties (tensile strength, cracking energy) over the computational mesh. Each finite element is considered as representative of a volume of heterogeneous material, whose mechanical behavior depends on its own volume. The parameters of the statistical distributions defining the elementary mechanical properties thus vary over the computational mesh element-by-element according to experimentally validated constitutive laws. Under a weak hydro-mechanical coupling assumption, the model considers that the mechanical cracking of a finite element induces loss of isotropy of its own permeability tensor. So, at the finite element level, the localized crack flow is smeared over the elementary volume. Its contribution is computed according to an experimentally enhanced parallel plates model. An experimental test, which studies the real-time water transmissivity evolution of reinforced concrete tie-specimens under uniaxial tensile loading, is numerically simulated. Constitutive hydro-mechanical parameters were calibrated in previous works for a given concrete formulation. So, in order to avoid of any adjustments in the model parameters, the reference experimental test was performed with the same concrete formulation as in previous phases of the research. Numerical results evidence that, once steel–concrete interface is properly treated, a probabilistic approach can lead to proper predictions of cracking and its effect on fluid leakage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andrade C, Gonzalez J (2004) Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Mater Corros 29(8):515–519

    Article  Google Scholar 

  2. Baroghel-Bouny V, Kinomura K, Thiery M, Moscardelli S (2011) Easy assessment of durability indicators for service life prediction or quality control of concretes with high volumes of supplementary cementitious materials. Cem Concr Compos 33:832–847

    Article  Google Scholar 

  3. Bazant Z, Oh B (1983) Crack band theory for fracture of concrete. Mater Struct 16(3):155–177

    Google Scholar 

  4. Boulay C, Dal Pont S, Belin P (2009) Real-time evolution of electrical resistance in cracking concrete. Cem Concr Res 39:825–831

    Article  Google Scholar 

  5. Colliat JB, Hautefeuille M, Ibrahimbegovic A, Matthies H (2007) Stochastic approach to size effect in quasi-brittle materials. Compt Rend Méc 335(8):430–435

    Article  MATH  Google Scholar 

  6. Dal Pont S, Schrefler B, Ehrlacher A (2005) Experimental and finite element analysis of a hollow cylinder submitted to high temperatures. Mater Struct 38(7):681–690

    Article  Google Scholar 

  7. Dal Pont S, Durand S, Schrefler B (2007) A multiphase thermo-hydro-mechanical model for concrete at high temperatures—Finite element implementation and validation under LOCA load. Nucl Eng Des 237(22):2137–2150

    Article  Google Scholar 

  8. Desmettre C, Charron JP (2011) Novel water permeability device for reinforced concrete under load. Mater Struct 44(9):1713–1723

    Article  Google Scholar 

  9. Desmettre C, Charron JP (2012) Water permeability of reinforced concrete with and without fiber subjected to static and constant tensile loading. Cem Concr Res 42(7):945–952. doi:10.1016/j.cemconres.2012.03.014

    Article  Google Scholar 

  10. Feller W (2008) An introduction to probability theory and its applications, vol 2. Wiley, New York

    MATH  Google Scholar 

  11. Ibrahimbegovic A, Colliat JB, Hautefeuille M, Brancherie D, Melnyk S (2011) Probability based size effect representation for failure in civil engineering structures built of heterogeneous materials. In: Papadrakakis M, Stefanou G, Papadopoulos V (eds) Computational methods in stochastic dynamics. Computational Methods in Applied Sciences, vol 22. Springer, Berlin, pp 291–313

  12. Irwin G (1968) Linear fracture mechanics, fracture transition, and fracture control. Eng Fract Mech 1(2):241–257

    Article  MathSciNet  Google Scholar 

  13. Jirásek M, Zimmermann T (1998) Rotating crack model with transition to scalar damage. J Eng Mech 124(3):277–284

    Article  Google Scholar 

  14. Jourdain X, Colliat JB, De Sa C, Benboudjema F, Gatuingt F (2014) Upscaling permeability for fractured concrete: meso-macro numerical approach coupled to strong discontinuities. Int J Numer Anal Methods Geomech 38(5):536–550. doi:10.1002/nag.2223

    Article  Google Scholar 

  15. Lemaitre J, Chaboche JL (1994) Mechanics of solid materials. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  16. Lewis R, Schrefler B (1987) The finite element method in the deformation and consolidation of porous media. Wiley, New York

    MATH  Google Scholar 

  17. Meftah F, Dal Pont S, Schrefler B (2012) A three-dimensional staggered finite element approach for random parametric modeling of thermo-hygral coupled phenomena in porous media. Int J Num Methods Geomech 36(5):574–596

    Article  Google Scholar 

  18. Meschke G, Grasberger S, Becker C, Jox S (2011) Smeared crack and X-FEM models in the context of poromechanics. Numerical modeling of concrete cracking. Springer, Berlin, pp 265–327

    Chapter  Google Scholar 

  19. Millard A, L’Hostis V (2012) Modelling the effects of steel corrosion in concrete, induced by carbon dioxide penetration. Eur J Environ Civ Eng 16(3–4):375–391

    Article  Google Scholar 

  20. Montemor M, Simoes A, Ferreira M (2003) Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques. Cem Concr Compos 25(4):491–502

    Article  Google Scholar 

  21. Ng A, Small J (1999) A case study of hydraulic fracturing using finite element methods. Can Geotech J 36(5):861–875

    Article  Google Scholar 

  22. Phan TS, Tailhan JL, Rossi P (2013) 3d numerical modelling of concrete structural element reinforced with ribbed flat steel rebars. Struct Concr 14(4):378–388. doi:10.1002/suco.201200053

    Article  Google Scholar 

  23. Picandet V, Khelidj A, Bellegou H (2009) Crack effects on gas and water permeability of concretes. Cem Concr Res 39(6):537–547

    Article  Google Scholar 

  24. Pijaudier-Cabot G, Dufour F, Choinska M (2009) Permeability due to the increase of damage in concrete: from diffuse to localized damage distributions. J Eng Mech 135(9):1022–1028

    Article  Google Scholar 

  25. Rastiello G, Boulay C, Dal Pont S, Tailhan J, Rossi P (2014) Real-time water permeability evolution of a localized crack in concrete under loading. Cem Concr Res 56:20–28. doi:10.1016/j.cemconres.2013.09.010

    Article  Google Scholar 

  26. Rastiello G, Tailhan JL, Rossi P, Dal Pont S (2015) Macroscopic probabilistic cracking approach for the numerical modelling of fluid leakage in concrete. Ann Solid Struct Mech 1–6. doi:10.1007/s12356-015-0038-6

  27. Réthoré J, De Borst R, Abellan MA (2007) A two-scale approach for fluid flow in fractured porous media. Int J Num Methods Eng 71(7):780–800

    Article  MathSciNet  MATH  Google Scholar 

  28. Rossi P (1988) Fissuration du béton: du matériau à la structure. Application de la mécanique linéaire de la rupture. PhD thesis, École Nationale des Ponts et Chaussées

  29. Rossi P (1993) Comportement dynamique des bétons: du matériau à la structure (511):25–39

  30. Rossi P, Wu X (1992) Probabilistic model for material behavior analysis and appraisement of concrete structures. Mag Concr Res 44:271–280

    Article  Google Scholar 

  31. Rossi P, Wu X, Le Maou F, Belloc A (1994) Scale effect on concrete in tension. Mater Struct 27(8):437–444

    Article  Google Scholar 

  32. Rossi P, Ulm F, Hachi F (1996) Compressive behavior of concrete: physical mechanisms and modeling. J Eng Mech 122(11):1038–1043

    Article  Google Scholar 

  33. Rots JG, Nauta P, Kuster GMA, Blaauwendraad J (1985) Smeared crack approach and fracture localization in concrete. Heron 30(1):1–48

  34. Secchi S, Schrefler BA (2012) A method for 3-d hydraulic fracturing simulation. Int J Fract 178(1–2):245–258

  35. Snow D (1969) A parallel plate model of permeable fractured media. PhD thesis, University of California at Berkley

  36. Su X, Yang Z, Liu G (2010) Monte carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: a 3d study. Int J Solids Struct 47(17):2336–2345

    Article  MATH  Google Scholar 

  37. Syroka-Korol E, Tejchman J, Mz Z (2013) Fe calculations of a deterministic and statistical size effect in concrete under bending within stochastic elasto-plasticity and non-local softening. Eng. Struct. 48:205–219. doi:10.1016/j.engstruct.2012.09.013

    Article  Google Scholar 

  38. Tailhan JL, Dal Pont S, Rossi P (2010) From local to global probabilistic modeling of concrete cracking. Ann Solid Struct Mech 1(2):103–115

    Article  Google Scholar 

  39. Tailhan JL, Rossi P, Phan T, Foulliaron J (2012) Probabilistic modelling of crack creation and propagation in concrete structures: some numerical and mechanical considerations. In: SSCS-2012

  40. Tailhan JL, Rossi P, Phan T, Rastiello G, Foulliaron J (2013) Multiscale probabilistic approaches and strategies for the modelling of concrete. In: FRAMCOS-8

  41. Tailhan JL, Rossi P, Caucci AM (2014) Probabilistic modelling of cracking in concrete structures. Eur J Environ Civ Eng 18(7):770–779. doi:10.1080/19648189.2013.878256

    Article  Google Scholar 

  42. Witherspoon P, Wang IKYSY, Gale J (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Res Resour 16(6):1016–1024

    Article  Google Scholar 

  43. Zimmerman R, Bodvarsson G (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23:1–30

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rastiello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastiello, G., Desmettre, C., Tailhan, JL. et al. Modeling of fluid leakage through multi-cracked RC structural elements using a numerical probabilistic cracking approach. Mater Struct 49, 3095–3108 (2016). https://doi.org/10.1617/s11527-015-0706-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0706-3

Keywords

Navigation