Skip to main content
Log in

Preparation and characterization of vitrified slag/geopolymers for construction and fire-resistance applications

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Incinerator ash transforms into vitrified slag through thermal plasma treatment and quenching processes. Thus, the heavy metals contained in the ash can be solidified into the framework structure of the vitrified slag, thus reducing the threat to the environment. This study used vitrified slag as a raw material in preparing geopolymers by applying alkali solutions of predetermined molar ratios at ambient temperature. The influences of alkali solutions at various SiO2/Al2O3 and SiO2/Na2O molar ratios on the properties of the geopolymers were evaluated. A foaming agent was also added during geopolymerization process to increase the porosity of the geopolymers; this could improve the fire resistance characteristics of the geopolymers. The test results indicated that the alkali solution at 57 SiO2/Al2O3 and 0.75 SiO2/Na2O molar ratios can produce geopolymers with optimal mechanical properties and fire resistance characteristics. Adding foaming agent can greatly improve the fire resistance of the geopolymers because of the increased porosity. According to the test results, the geopolymers fabricated using vitrified slag and alkali solutions can be potential materials for construction and fire resistance applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cedzynska K, Kolacinski Z, Izydorczyk M, Sroczynski W (1999) Plasma vitrification of waste incinerator ashes. Paper presented at international ash utilization symposium, paper no. 111

  2. Davidovits J (1976) Solid phase synthesis of mineral blockcomposite by low temperature polycondensation of alumino-silicate polymers. Paper presented at IUPAC macromolecular symposium, Stockholm, pp 3–15

  3. Davidovits J (1982) Mineral polymers and methods of making them. U.S. Patent 4349486, pp 1–17

  4. Davidovits J, Sawyer JL (1985) Early high-strength mineral polymer. U.S. Patent 4509985, pp 1–33

  5. Davidovits J (1994) Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement. J Mater Educ 16(2–3):91–139

    Google Scholar 

  6. Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal 37:1633–1656

    Article  Google Scholar 

  7. Davidovits J (1994) Global warming impact on the cement and aggregates industries. World Resour Rev 6(2):263–278

    Google Scholar 

  8. Davidovits J, Comrie DC, Paterson JH (1990) Geopolymer concretes for environmental protection. Concrete 21(7):30–40

    Google Scholar 

  9. Lecomte I, Henrist C, Liégeoisa M, Maseri F, Rulmont A, Cloots R (2006) (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J Eur Ceram Soc 26:3789–3797

    Article  Google Scholar 

  10. Slavik R, Bednarik V, Vondruska M, Skoba O, Hanzlicek T (2005) Chemical indicator of geopolymer. Proceedings of the geopolymer 2005 world congress, pp 17–19

  11. Hajimohammadi A, Provis JL, Van Deventer JSJ (2008) One-part geopolymer mixes from geothermal silica and sodium aluminate. Ind Eng Chem Res 47:9396–9405

    Article  Google Scholar 

  12. Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933

    Article  Google Scholar 

  13. Xu H, Van Deventer JSJ (2000) The geopolymerisation of alumino-silicate minerals. Int J Miner Process 59:247–266

    Article  Google Scholar 

  14. Verdolotti L, Iannace S, Lavorgna M, Lamanna R (2008) Geopolymerization reaction to consolidate incoherent pozzolanic soil. J Mater Sci 43:865–873

    Article  Google Scholar 

  15. Al Bakri AMM, Kamarudin H, Bnhussain M, Khairul Nizar I, Mastura WIW (2011) Mechanism and chemical reaction of fly ash geopolymer cement: a review. J Asian Sci Res 1(5):247–253

    Google Scholar 

  16. Phair JW, Van Deventer JSJ (2002) Characterization of fly-ash-based geopolymeric binders activated with sodium aluminate. Ind Eng Chem Res 41:4242–4251

    Article  Google Scholar 

  17. Brew DRM, Mackenzie KJD (2007) Geopolymer synthesis using silica fume and sodium aluminate. J Mater Sci 42:3990–3993

    Article  Google Scholar 

  18. Komnitsas K, Zaharaki D, Perdikatsis V (2007) Geopolymerisation of low calcium ferronickel slags. J Mater Sci 42:3073–3082

    Article  Google Scholar 

  19. Lee WKW, van Deventer JSJ (2003) Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates. Langmuir 19:8726–8734

    Article  Google Scholar 

  20. Gadsden JA (1979) Infra-red spectra of minerals and related inorganic compounds. Butterworths, UK, p 65

    Google Scholar 

  21. Swanepoel JC, Strydom CA (2002) Utilisation of fly ash in a geopolymeric material. Appl Geochem 17:1143–1148

    Article  Google Scholar 

  22. Andini S, Cioffi R, Colangelo F, Grieco T, Montagnaro F, Santoro L (2008) Coal fly ash as raw material for the manufacture of geopolymer-based products. Waste Manag 28:416–423

    Article  Google Scholar 

  23. Davidovits J (2008) Geopolymer chemistry and applications. Geopolymer Institute, Saint-Quentin, pp 61–76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Chin Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, YC., Fang, YS. & Cheng, TW. Preparation and characterization of vitrified slag/geopolymers for construction and fire-resistance applications. Mater Struct 49, 1883–1891 (2016). https://doi.org/10.1617/s11527-015-0620-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0620-8

Keywords

Navigation