Skip to main content

Advertisement

Log in

Factors affecting the strength of structural lightweight aggregate concrete with and without fibers in the 1,200–1,600 kg/m3 density range

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Concrete compressive strength decreases significantly with decreasing density and therefore, there are few examples of structural grade concretes with densities below 1,600 kg/m3. Here we show the development of structural lightweight aggregate concrete in the 1,200–1,600 kg/m3 density range. Compressive strengths of up to 36 MPa are obtained at 28 days. By using fibers, mixes with flexural strengths of up to 7 MPa and high ductility in flexure are obtained at 28 days. These results are significantly better than those in existing literature at comparable densities. Compressive strength of lightweight concrete depends on both paste and aggregate properties, while the flexural strength depends mostly on the volume fraction of fibers used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alduaij J, Alshaleh K, Haque MN, Ellaithy K (1999) Lightweight concrete in hot coastal areas. Cem Concr Compos 21(5–6):453–458. doi:10.1016/S0958-9465(99)00035-9

    Article  Google Scholar 

  2. Ansari F, Zhang Z, Szary P, and Maher A (2002) Effects of synthetic air entraining agents on compressive strength of Portland cement concrete-Mechanism of interaction and remediation strategy. Federal Highway Administration Report FHWA-NJ-2002-025

  3. Balaguru P, Dipsia MG (1993) Properties of fiber reinforced high-strength semilightweight concrete. ACI Mater J 90(5):399–405

    Google Scholar 

  4. Bhatty JI, Reid KJ (1989) Moderate strength concrete from lightweight sludge ash aggregates. Int J Cem Compos Lightweight Concr 11(3):179–187. doi:10.1016/0262-5075(89)90091-2

    Article  Google Scholar 

  5. Bogas JA, Gomes A, Pereira MFC (2012) Self-compacting lightweight concrete produced with expanded clay aggregate. Constr Build Mater 35:1013–1022. doi:10.1016/j.conbuildmat.2012.04.111

    Article  Google Scholar 

  6. Bogas JA, Gomes A (2013) Compressive behavior and failure modes of structural lightweight aggregate concrete—characterization and strength prediction. Mater Des 46:832–841. doi:10.1016/j.matdes.2012.11.004

    Article  Google Scholar 

  7. Bogas JA, Gomes MG, Gomes A (2013) Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method. Ultrasonics 53(5):962–972. doi:10.1016/j.ultras.2012.12.012

    Article  Google Scholar 

  8. Bremner TW, Holm TA (1986) Elastic compatibility and the behavior of concrete. ACI J. Proc. 83(2):244–250. doi:10.14359/10422

    Google Scholar 

  9. Bremner TW, Holm TA (1995) High performance lightweight concrete—a review. ACI SP 154:1–20. doi:10.14359/947

    Google Scholar 

  10. Campione G, Miraglia N, Papia M (2001) Mechanical properties of steel fibre reinforced concrete with pumice stone or expanded lightweight clay aggregates. Mater Struct 34(4):201–210. doi:10.1007/BF02480589

    Article  Google Scholar 

  11. Chandra S, Berntsson L (2002) Lightweight aggregate concrete. William Andrew Publishing, New York

    Google Scholar 

  12. Chen B, Liu J (2004) Properties of lightweight expanded polystyrene concrete reinforced with steel fiber. Cem Concr Res 34(7):1259–1263. doi:10.1016/j.cemconres.2003.12.014

    Article  Google Scholar 

  13. Chen B, Liu J (2005) Contribution of fibers on the properties of the high-strength lightweight concrete having good workability. Cem Concr Res 35(5):913–917. doi:10.1016/j.cemconres.2004.07.035

    Article  Google Scholar 

  14. Chi JM, Huang R, Yang CC, Chang JJ (2003) Effect of aggregate properties on the strength and stiffness of lightweight concrete. Cem Concr Compos 25(2):197–205. doi:10.1016/S0958-9465(02)00020-3

    Article  Google Scholar 

  15. Demirboğa R, Gül R (2003) The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem Concr Res 33(5):723–727. doi:10.1016/S0008-8846(02)01032-3

    Article  Google Scholar 

  16. De Weerdt K, Haha MB, Le Saout G, Kjellsen KO, Justnes H, Lothenbach B (2011) Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res 41(3):279–291. doi:10.1016/j.cemconres.2010.11.014

    Article  Google Scholar 

  17. Düzgün OA, Gül R, Aydin AC (2005) Effect of steel fibers on the mechanical properties of natural lightweight aggregate concrete. Mater Lett 59(27):3357–3363. doi:10.1016/j.matlet.2005.05.071

    Article  Google Scholar 

  18. Gao J, Sun W, Morino K (1997) Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete. Cem Concr Compos 19(4):307–313. doi:10.1016/S0958-9465(97)00023-1

    Article  Google Scholar 

  19. Glenn GM, Miller RM, Orts WJ (1998) Moderate strength lightweight concrete from organic aquagel mixtures. Ind Crop Prod 8(2):123–132. doi:10.1016/S0926-6690(97)10016-4

    Article  Google Scholar 

  20. Green S, Brooke N, and McSaveney L (2010) Pumice aggregates for structural lightweight and internally cured concretes. Research Report for Industrial Processors Limited (INPRO)

  21. Hassanpour M, Shafigh P, Bin Mahmud H (2012) Lightweight aggregate concrete fiber reinforcement—a review. Constr Build Mater 37:452–461. doi:10.1016/j.conbuildmat.2012.07.071

    Article  Google Scholar 

  22. Kayali O, Haque MN, Zhu B (2003) Some characteristics of high strength fiber reinforced lightweight aggregate concrete. Cem Concr Compos 25(2):207–313. doi:10.1016/S0958-9465(02)00016-1

    Article  Google Scholar 

  23. Ke Y, Beaucour AL, Ortola S, Dumontet H, Cabrillac R (2009) Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Constr Build Mater 23(8):2821–2828. doi:10.1016/j.conbuildmat.2009.02.038

    Article  Google Scholar 

  24. Kim HK, Jeon JH, Lee HK (2012) Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Constr Build Mater 29:193–200. doi:10.1016/j.conbuildmat.2011.08.067

    Article  Google Scholar 

  25. Le Roy R, Parant E, Boulay C (2005) Taking into account the inclusions’ size in lightweight concrete compressive strength prediction. Cem Concr Res 35(4):770–775. doi:10.1016/j.cemconres.2004.06.002

    Article  Google Scholar 

  26. Libre NA, Shekarchi M, Mahoutian M, Soroushian P (2011) Mechanical properties of fiber reinforced lightweight aggregate concrete made with natural pumice. Constr Build Mater 25(5):2458–2464. doi:10.1016/j.conbuildmat.2010.11.058

    Article  Google Scholar 

  27. Litsomboon T, Nimityongskul P, Anwar N (2009) Development of lightweight aggregate concrete containing pulverized fly ash and bottom ash. Adv Concr Str. 400–402:379–385. doi:10.4028/www.scientific.net/KEM.400-402.379

    Google Scholar 

  28. Lo TY, Cui HZ, Li ZG (2004) Influence of aggregate pre-wetting and fly ash on mechanical properties of lightweight concrete. Waste Manag 24(4):333–338. doi:10.1016/j.wasman.2003.06.003

    Article  Google Scholar 

  29. Miao B, Chern J-C, Yang C-A (2003) Influences of fiber content on properties of self-compacting steel fiber reinforced concrete. J Chin Inst Eng 26(4):523–530

    Article  Google Scholar 

  30. Mounanga P, Khokhar MIA, El Hachem R, Loukili A (2011) Improvement of the early-age reactivity of fly ash and blast furnace slag cementitious systems using limestone filler. Mater Struct 44(2):437–453. doi:10.1617/s11527-010-9637-1

    Article  Google Scholar 

  31. Muethel RW (1995) Investigation of the air content of plastic vs. hardened concrete. Michigan Department of Transportation Research Report R-1332

  32. Mun KJ (2007) Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete. Constr Build Mater 21(7):1583–1588

    Article  Google Scholar 

  33. Nehdi M (2001) Ternary and quaternary cements for sustainable development. Concr Int 23(4):34–42

    Google Scholar 

  34. Poppe A-M, De Schutter G (2005) Cement hydration in the presence of high filler contents. Cem Concr Res 35(12):2290–2299. doi:10.1016/j.cemconres.2005.03.008

    Article  Google Scholar 

  35. Reiter L (2013) Mechanical aspects of smart dynamic casting. M.S. Thesis, ETH Zürich

  36. Sadrmomtazi A, Sobhani J, Mirgozar MA, Najimi M (2012) Properties of multi-strength grade EPS concrete containing silica fume and rice husk ash. Constr Build Mater 35:211–219. doi:10.1016/j.conbuildmat.2012.02.049

    Article  Google Scholar 

  37. Stähli P (2008) Ultra-fluid, oriented hybrid-fibre-concrete. Ph.D. Thesis, ETH Zürich. doi:10.3929/ethz-a-005722547

  38. Sivakumar A, Santhanam M (2007) Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres. Cem Concr Compos 29(8):603–608. doi:10.1016/j.cemconcomp.2007.03.006

    Article  Google Scholar 

  39. Van Mier JGM (1997) Fracture processes of concrete. CRC Press Inc, Boca Raton

    Google Scholar 

  40. Wang J-Y, Chia K-S, Liew J-YR, Zhang M-H (2013) Flexural performance of fiber-reinforced ultra lightweight cement composites with low fiber content. Cem Concr Compos 43:39–47. doi:10.1016/j.cemconcomp.2013.06.006

    Article  Google Scholar 

  41. Wuest J (2007) Comportement structural des bétons de fibres ultra performants en traction dans des éléments composés. Ph. D. Thesis, EPFL. doi:10.5075/epfl-thesis-3987

  42. Yazici S, İnan G, Tabak V (2007) Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Constr Build Mater 21(6):1250–1253. doi:10.1016/j.conbuildmat.2006.05.025

    Article  Google Scholar 

  43. Yeh I-C (1998) Modeling of strength of high-performance concrete using artificial neural networks. Cem Concr Res 28(12):1797–1808. doi:10.1016/S0008-8846(98)00165-3

    Article  Google Scholar 

  44. Zhang M-H, Gjørv OE (1991) Characteristics of lightweight aggregates for high-strength concrete. ACI Mater J 88(2):150–158

    Google Scholar 

  45. Zhang M-H, Gjørv OE (1991) Mechanical properties of high-strength lightweight concrete. ACI Mater J 88(3):240–247

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Alexandre Bauer, Sarah Gaillard, Timothy Hafen, Damian Lüthi, Andrea Korell, and Marc Schultheiss for performing several of the experiments reported here in various student projects at ETH Zürich. Heinz Richner is also thanked for extensive support in the concrete lab at ETH Zürich. Lorenzo Boccadoro, Eike Klingsch, Prof. Mario Fontana, and Prof. Andrea Frangi from ETH Zürich are thanked for help with the overall project and for fruitful and interesting discussions. Arnd Eberhardt from Sika AG is thanked for the design of the modified Füller curve. Erne AG is thanked for providing material and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Flatt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suraneni, P., Bran Anleu, P.C. & Flatt, R.J. Factors affecting the strength of structural lightweight aggregate concrete with and without fibers in the 1,200–1,600 kg/m3 density range. Mater Struct 49, 677–688 (2016). https://doi.org/10.1617/s11527-015-0529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0529-2

Keywords

Navigation