Skip to main content
Log in

Experimental and numerical study on cracking process in RC and R/FRC ties

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A numerical non-linear procedure able to represent the behavior of cracked steel fiber reinforced concrete (SFRC) is herein presented and verified. The involved post-cracking mechanisms, particularly tension softening and tension stiffening, have been investigated and properly taken into account. Different tension softening relationships have been implemented and discussed, one based on a micro-mechanical approach, another obtained from inverse analysis and finally the Model Code 2010 (MC2010) law. These models have been adopted in conjunction with a smeared crack approach to perform FE simulations of R/FRC ties characterized by different cross-sections and fiber volume fractions. Numerical results have been validated against a comprehensive experimental program on R/FRC (characterized by a tension softening behavior) and RC ties recently carried out at the University of Brescia. Comparisons between experimental and numerical results indicate that smeared models can be adopted also for the analysis of this structural typology, subjected to a uniaxial state of stress, as a valuable alternative to discrete approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. di Prisco M, Plizzari GA, Vandewalle L (2009) Fibre reinforced concrete: new design perspectives. Mater Struct 42(9):1261–1281

    Article  Google Scholar 

  2. Tiberti G, Minelli F, Plizzari G (2014) Reinforcement optimization of fiber reinforced concrete linings for conventional tunnels. Compos Part B Eng 58:199–207. doi:10.1016/j.compositesb.2013.10.012

    Article  Google Scholar 

  3. fib Bulletin N° 65 (2012) Model Code 2010—final draft, vol 1. Model Code. ISBN 978-2-88394-105-2

  4. Beeby AW (1971) The prediction of cracking in reinforced concrete members. Ph.D. Thesis, University of London

  5. Borosnyói A, Balázs GL (2005) Models for flexural cracking in concrete: the state of the art. Struct Concr 6(2):53–62

    Article  Google Scholar 

  6. Harajli MH, Mabsout ME (2002) Evaluation of bond strength of steel reinforcing bars in plain and fiber-reinforced concrete. ACI Struct J 99(4):509–517

    Google Scholar 

  7. Mitchell D, Abrishami HH (1997) Influence of steel fibres on tension stiffening. ACI Struct J 94(6):769–773

    Google Scholar 

  8. Bischoff PH (2003) Tension stiffening and cracking of steel fibre reinforced concrete. J Mater Civil Eng 15(2):174–182

    Article  Google Scholar 

  9. Fields K, Bischoff PH (2004) Tension stiffening and cracking of high strength reinforced concrete tension members. ACI Struct J 101(4):447–456

    Google Scholar 

  10. Minelli F, Tiberti G, Plizzari GA (2011) Crack control in RC elements with fiber reinforcement. In: Aldea C-M, Ekenel M (eds) ACI Special Publication “Advances in FRC durability and field applications”, SP-280(6). ACI, Farmington Hills

  11. Tiberti G, Minelli F, Plizzari G, Vecchio FJ (2014) Influence of concrete strength on crack development in SFRC members. Cem Concr Compos 45:176–185. doi:10.1016/j.cemconcomp.2013.10.004

    Article  Google Scholar 

  12. Deluce JR, Vecchio FJ (2013) Cracking behavior of Steel Fiber-Reinforced Concrete members containing conventional reinforcement. ACI Struct J 110(3):481–490

    Google Scholar 

  13. Giurani E (1981) On the effective axial stiffness of a bar in cracked concrete. Studi e Ricerche 3:205–226

  14. Somayaji S, Shah SP (1981) Bond stress versus slip relationship and cracking response of tension members. ACI J Proc 78(3):217–225

    Google Scholar 

  15. Bigaj AJ (1999) Structural dependence of rotation capacity of plastic hinges in RC beams and slabs. Ph.D. Thesis, Delft University of Technology

  16. Fantilli AP, Ferretti D, Iori I, Vallini P (1998) Flexural deformability of reinforced concrete beams. J Struct Eng 124(9):1041–1049

    Article  Google Scholar 

  17. Fantilli AP, Mihashi H, Vallini P (2007) Crack profile in RC, R/FRCC and R/HPFRCC members in tension. Mater Struct 40(10):1099–1114

    Article  Google Scholar 

  18. Rots J (1988). Computational modeling of concrete fracture. Ph.D. Thesis, Delft University of Technology

  19. Bernardi P, Cerioni R, Ferretti D, Michelini E (2014) Role of multiaxial state of stress on cracking of RC ties. Eng Fract Mech 123:21–33. doi:10.1016/j.engfracmech.2014.02.011

    Article  Google Scholar 

  20. Feenstra PH (1993) Computational aspects of biaxial stress in plain and reinforced concrete. Ph.D. Thesis, Delft University of Technology

  21. Vecchio FJ (2001) Disturbed Stress Field Model for reinforced concrete: implementation. J Struct Eng 127(1):12–20

  22. Lee S-C, Cho J-Y, Vecchio FJ (2011) Diverse embedment model for steel fiber-reinforced concrete in tension: model development. ACI Mater J 108(5):516–525

    Google Scholar 

  23. Lee S-C, Cho J-Y, Vecchio FJ (2013) Tension-stiffening model for steel fiber-reinforced concrete containing conventional reinforcement. ACI Struct J 110(4):639–648

    Google Scholar 

  24. Bernardi P, Michelini E, Minelli F, Sirico A, Tiberti G (2014) Non-linear analyses and cracking process of FRC tension ties. In: Bićanić N et al (eds) Proceedings of computational modelling of concrete structures (EURO-C 2014). CRC Press/Balkema, Leiden, pp 883–892

    Chapter  Google Scholar 

  25. Cerioni R, Iori I, Michelini E, Bernardi P (2008) Multi-directional modeling of crack pattern in 2D R/C members. Eng Fract Mech 75:615–628. doi:10.1016/j.engfracmech.2007.04.012

    Article  Google Scholar 

  26. Bernardi P, Cerioni R, Michelini E (2013) Analysis of post-cracking stage in SFRC elements through a non-linear numerical approach. Eng Fract Mech 108:238–250. doi:10.1016/j.engfracmech.2013.02.024

    Article  Google Scholar 

  27. Harajli MH (2007) Numerical bond analysis using experimentally derived local bond laws: a powerful method for evaluating the bond strength of steel bars. J Struct Eng 133(5):695–705

    Article  Google Scholar 

  28. Tiberti G, Minelli F, Plizzari G (2015) Cracking behavior in reinforced concrete members with steel fibers: a comprehensive experimental study. Cem Concr Res 68:24–34. doi:10.1016/j.cemconres.2014.10.011

    Article  Google Scholar 

  29. EN 14651–5 (2005) Precast concrete products—test method for metallic fibre concrete—measuring the flexural tensile strength. European Standards, Brussels

    Google Scholar 

  30. EN 10080 (2005) Steel for the reinforcement of concrete—weldable reinforcing steel—general. European Standards, Brussels

    Google Scholar 

  31. ABAQUS 6.10 (2010) Online documentation. Dassault Systémes Simulia Corporation, Providence

    Google Scholar 

  32. Li VC, Stang H, Krenchel H (1993) Micromechanics of crack bridging in fibre-reinforced concrete. Mater Struct 26:486–494

    Article  Google Scholar 

  33. Roelfstra PE, Wittmann FH (1986) Numerical method to link strain softening with failure of concrete. In: Wittmann FH (ed) Fracture toughness and fracture energy. Elsevier, London

    Google Scholar 

  34. Walraven JC, Reinhardt HW (1981) Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concrete subjected to shear loading. HERON 26(1a):5–68

    Google Scholar 

  35. Chiaia B, Fantilli AP, Vallini P (2009) Evaluation of crack width in FRC structures and application to tunnel linings. Mater Struct 42:339–351

    Article  Google Scholar 

  36. Deluce JR, Lee SC, Vecchio FJ (2014) Crack model for Steel Fiber-Reinforced Concrete members containing conventional reinforcement. ACI Struct J 111(1):93–102

    Google Scholar 

  37. Belletti B, Bernardi P, Cerioni R, Iori I (2003) On the behaviour of R/C beams without shear reinforcement. In: Bićanić N et al (eds) Proceedings of computational modelling of concrete structures (EURO-C 2003). CRC Press/Balkema, Leiden, pp 645–654

    Google Scholar 

  38. Belletti B, Bernardi P, Meda A (2004) Shear behaviour of prestressed beams reinforced with steel fibers. In: di Prisco M et al (eds) Proceedings of the 6th RILEM international symposium (BEFIB 2004). RILEM Publication SARL, Bagneux, pp 925–934

    Google Scholar 

  39. Bernardi P, Cerioni R, Michelini E (2012) Numerical modelling of the behaviour of SFRC elements in presence of multiple cracks, CD. In: Barros J et al (eds) Proceedings: Book of abstracts of the 8th RILEM international symposium (BEFIB 2012). RILEM Publication SARL, Bagneux, pp 219–220

    Google Scholar 

  40. Malecki T, Marzec I, Bobiński J, Tejchman J (2007) Effect of a characteristic length on crack spacing in a reinforced concrete bar under tension. Mech Res Commun 34:460–465

    Article  MATH  Google Scholar 

  41. Wu HQ, Gilbert RI (2009) Modeling short-term tension stiffening in reinforced concrete prisms using a continuum-based finite element model. Eng Struct 31:2380–2391

    Article  Google Scholar 

Download references

Acknowledgment

The contribution of M.Sc. Eng. Alice Sirico in data processing and modeling is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Michelini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardi, P., Michelini, E., Minelli, F. et al. Experimental and numerical study on cracking process in RC and R/FRC ties. Mater Struct 49, 261–277 (2016). https://doi.org/10.1617/s11527-014-0494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0494-1

Keywords

Navigation