Skip to main content
Log in

Influence of fiber content and reinforcement ratio on the water permeability of reinforced concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In service, reinforced concrete structures undergo various stresses inducing cracks. These cracks provide a preferential path for water and aggressive agents penetration into concrete, which compromises the structural durability by accelerating concrete and steel reinforcement deterioration. In this context, durability of cracked concrete has become an important research topic and can be studied through the permeability of concrete. This research project focuses on the influence of the fiber content and steel reinforcement ratio on the water permeability of reinforced concrete. Water permeability tests were carried out simultaneously with a uniaxial tensile loading applied on reinforced concrete prisms made of high performance concrete (HPC), high performance fiber reinforced concrete (HPFRC) and ultra high performance fiber reinforced concrete (UHPFRC). In service conditions, permeability is reduced by 31, 92 and 99 % for fiber contents of 0.75 % (HPFRC), 1.5 % (HPFRC) and 2 % (UHPFRC) respectively compared with conventional HPC. The increase of steel reinforcement ratio from 1.23 to 2.47 % reduced the permeability by 70 % at service loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abbas A, Carcassès M, Ollivier JP (2000) The importance of gas permeability in addition to the compressive strength of concrete. Mag Concr Res 52(1):1–6

    Article  MATH  Google Scholar 

  2. ACI (2003) Building code requirements for structural concrete (ACI 318-02) and commentary (ACI 318R-02). American Concrete Institute, Detroit

    Google Scholar 

  3. Akhavan A, Shafaatian S-M-H, Rajabipour F (2012) Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars. Cem Concr Res 42(2):313–320

    Article  Google Scholar 

  4. Aldea CM, Shah SP, Karrr A (1999) Permeability of cracked concrete. Mater Struct 32:370–376

    Article  Google Scholar 

  5. ASTM (2010) Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression ASTM C469/C469M. American Society for Testing and Materials, ASTM International, West Conshohocken

    Google Scholar 

  6. ASTM (2012) Standard test method for compressive strength of cylindrical concrete specimens ASTM C39/C39M. American Society for Testing and Materials, ASTM International, West Conshohocken

    MATH  Google Scholar 

  7. BAEL (1999) Règles BAEL 91 modifiées 99 - Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états-limites. Eyrolles, édition 2000–333 pages, pp 45–47

  8. Beaurivage F (2009) Étude de l’influence des paramètres structuraux sur les lois de comportement des bétons fibrés pour la conception de structures. École Polytechnique de Montréal, Montréal

    Google Scholar 

  9. Bischoff PH (2001) Effects of shrinkage on tension stiffening and cracking in reinforced concrete. Can J Civ Eng 28(3):363–374

    Article  Google Scholar 

  10. Breysse D, Gérard B (1997) Transport of fluids in cracked media. In: Reinhardt HW (ed) Rilem Report 16—Penetration and permeability of concrete: barriers to organic and contaminating liquids, vol 16. E & FN Spon, Stuttgart, pp 123–154

    Google Scholar 

  11. Charron J-P, Denarié E, Brühwiler E (2008) Transport properties of water and glycol in an ultra high performance fiber reinforced concrete (UHPFRC) under high tensile deformation. Cem Concr Res 38(5):689–698

    Article  Google Scholar 

  12. Charron JP, Denarié E, Brühwiler E (2007) Permeability of ultra-high performance fiber reinforced concretes (UHPFRC) under high stresses. Mater Struct 40(3):269–277

    Article  Google Scholar 

  13. CSA (2009) Concrete materials and methods of concrete construction CAN-CSA A23.1-09. Canadian Standards Association, Mississauga, Ontario, Canada

  14. Darcy H (1856) Détermination des lois d’écoulement de l’eau à travers le sable, Appendix, note D. Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris, pp 590–594

    Google Scholar 

  15. Desmettre C, Charron JP (2011) Novel water permeability device for reinforced concrete under load. Mater Struct 44(9):1713–1723

    Article  Google Scholar 

  16. Desmettre C, Charron JP (2012) Water permeability of reinforced concrete with and without fiber subjected to static and constant tensile loading. Cem Concr Res 42:945–952

    Article  Google Scholar 

  17. Desmettre C, Charron JP (2013) Water permeability of reinforced concrete subjected to cyclic tensile loading. ACI Mater J 110:79–88

    Google Scholar 

  18. Fields K, Bischoff PH (2004) Tension stiffening and cracking of high-strenght reinforced concrete tension members. ACI Struct J 101(4):447–456

    Google Scholar 

  19. Hoseini M, Bindiganavile V, Banthia N (2009) The effect of mechanical stress on permeability of concrete: a review. Cem Concr Compos 31(4):213–220

    Article  Google Scholar 

  20. Kollek JJ (1989) The determination of the permeability of concrete to oxygen by the Cembureau method—a recommendation. Mater Struct 22(3):225–230

    Article  Google Scholar 

  21. Lawler JS, Zampini D, Shah SP (2002) Permeability of cracked hybrid fiber-reinforced mortar under load. ACI Mater J 99:379–385

    Google Scholar 

  22. Lawler JS, Zampini D, Shah SP (2005) Microfiber and macrofiber hybrid fiber-reinforced concrete. J Mater Civ Eng 17(5):595–604

    Article  Google Scholar 

  23. Ludirdja D, Berger RL, Young JF (1989) Simple method for measuring water permeability of concrete. ACI Mater J 86(5):433–439

    Google Scholar 

  24. Mivelaz P (1996) Etanchéité des structures en béton armé, fuites au travers d’un élément fissuré. École Polytechnique Fédérale de Lausanne, Lausanne

    Google Scholar 

  25. Naaman AE (2008) High performance fiber reinforced cement composites. In: Caijuin S, Mo Y-L (eds) High-performance construction materials: science and applications. Engineering materials for technological needs, vol 1. World Scientific Publishing Company, Singapore, pp 91–153

  26. Neville AM (1996) Properties of concrete, 4th edn. Wiley, New York

    Google Scholar 

  27. Picandet V, Abdelhafid K, Hervé B (2009) Crack effects on gas and water permeability of concretes. Cem Concr Res 39:537–547

    Article  Google Scholar 

  28. Powers TC, Copeland LE, Hayes JC, Mann HM (1954) Permeability of Portland cement paste. J Am Concr Inst 26(3):285–298

    Google Scholar 

  29. Rapoport J, Aldea C, Shah S, Ankenman B, Karr A (2002) Permeability of cracked steel fiber-reinforced concrete. J Mater Civ Eng 14(4):355–358

    Article  Google Scholar 

  30. RILEM (2003) Final recommendation of RILEM TC 162-TDF: test and design methods for steel fibre reinforced concrete sigma-epsilon-design method. Mater Struct 36(262):560–567

    Article  Google Scholar 

  31. Wang K, Jansen DC, Shah SP, Karr AF (1997) Permeability study of cracked concrete. Cem Concr Res 27(3):381–393

    Article  Google Scholar 

Download references

Acknowledgments

This research project has been financially supported by the Québec Research Fund on Nature and Technologies (FQRNT) and by the Natural Sciences and Engineering Research Council (NSERC). The authors are grateful to Holcim, Bekaert, Euclid and Sika for their material donations for achieving this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Charron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubert, M., Desmettre, C. & Charron, JP. Influence of fiber content and reinforcement ratio on the water permeability of reinforced concrete. Mater Struct 48, 2795–2807 (2015). https://doi.org/10.1617/s11527-014-0354-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0354-z

Keywords

Navigation