Skip to main content
Log in

Ogden and Mooney-Rivlin hyperelastic models comparison in porcine lobular tissue

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Pigs are one of the most widely used animal models for research due to their similarity to humans, and one of the models of choice for skin research. In this article, we worked with porcine earlobe skin, characterized for a uniaxial tensile test in a universal mechanical test machine (Cellscale® Univert). The data obtained from the uniaxial tensile test were fitted to constitutive models for stress derived from the Ogden and Mooney-Rivlin stress-energy density function. The parameters for the Ogden and Mooney-Rivlin hyperelastic models were calibrated using the least squares optimization of Levenberg–Marquardt. In this study, the first constitutive model of the porcine earlobe was established, the model demonstrates the anisotropy of the tissue. This is seen in the classic J-shape, which characterizes soft tissues. These data will be valuable as a reference point for future animal studies, and provide information for pig skin models.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. J. Snedeker, P. Niederer, F. Schmidlin, M. Farshad, C. Demetropoulos, J. Lee, K.H. Yang, Strain-rate dependent material properties of the porcine and human kidney capsule. J. Biomech. 38(5), 1011–1021 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. S. Marchesseau, T. Heimann, S. Chatelin, R. Willinger, H. Delingette, Fast porous visco-hyperelastic soft tissue model for surgery simulation: application to liver surgery. Prog. Biophys. Mol. Biol. 103(2–3), 185–196 (2010)

    Article  PubMed  Google Scholar 

  3. J.G. Snedeker, M. Barbezat, P. Niederer, F.R. Schmidlin, M. Farshad, Strain energy density as a rupture criterion for the kidney: impact tests on porcine organs, finite element simulation, and a baseline comparison between human and porcine tissues. J. Biomech. 38, 993–1001 (2005). https://doi.org/10.1016/j.jbiomech.2004.05.030

    Article  CAS  PubMed  Google Scholar 

  4. J.L. Molina-Martínez, G. Alonso-Villavicencio, D. Heredia-Ruiz, M.N. García-Cruz, C. Sánchez-Álvarez, M. Castro-Gutiérrez, L. Chaviano-Álvarez, 2015 Bioética en la experimentación animal. REDVET Revista Electrónica de Veterinaria 16(2), 1–9 (2015)

    Google Scholar 

  5. C.J. Juárez-Portilla, R.C. Zepeda-Hernández, J.A. Sánchez-Salcedo, M. Flores-Muñoz, Ó. López-Franco, A. Cortés-Sol, T. Molina-Jiménez, The use of animals in research and teaching: guidelines and directives for their treatment. Eduscientia. Divulgación de la ciencia educativa 4, 4–19 (2019)

    Google Scholar 

  6. R.C. Dutta, A.K. Dutta, Human-Organoid models: accomplishments to salvage test-animals. J Biomed Eng Med Dev 01, 1–8 (2016)

    Google Scholar 

  7. J. Tannenbaum, B.T. Bennett, Russell and Burch’s 3Rs Then and now: the need for clarity in definition and purpose. J. Am. Assoc. Lab. Anim. Sci. 52(2), 120–132 (2015)

    Google Scholar 

  8. G.A. Holzapfel, B. Fereidoonnezhad, Modeling of Damage in Soft Biological Tissues-Chapter 5, in Biomechanics of Living Organs Hyperelastic Constitutive Laws for Finite Element Modeling. (Elsevier, Amsterdam, 2017), pp.101–123

    Chapter  Google Scholar 

  9. T.C. Gasser, R.W. Ogden, G.A. Holzapfel, Hyperelastic modeling of arterial layers with distributed collagen fiber orientations. J. R. Soc. Interface. 3, 15–35 (2005). https://doi.org/10.1098/rsif.2005.0073

    Article  PubMed Central  Google Scholar 

  10. A.S. Caro-Bretelle, P. Ieeny, R. Leger, S. Corn, I. Bazin, F. Bretelle, Constitutive modeling of stress softening and permanent set in a porcine skin tissue: Impact of the storage preservation. J. Biomech. 49(13), 2863–2869 (2016). https://doi.org/10.1016/j.jbiomech.2016.06.026

    Article  CAS  PubMed  Google Scholar 

  11. K. Chaimoon, P. Chindaprasirt, An anisotropic hyperelastic model with an application to soft tissues. Eur. J. Mech. 78, 103845 (2019)

    Article  MathSciNet  Google Scholar 

  12. S.L. Evans, C.A. Holt, Measuring the mechanical properties of human skin in vivo using digital image correlation and finite element modeling. J. Strain Anal. Eng. Des. 44(5), 337–345 (2009)

    Article  Google Scholar 

  13. J.E. Bischoff, E.M. Arruda, K. Grosh, Finite element modeling of human skin using an isotropic, nonlinear elastic constitutive model. J. Biomech. 33(6), 645–652 (2000)

    Article  CAS  PubMed  Google Scholar 

  14. F. M. Hendriks, Mechanical behavior of human epidermal and dermal layers in vivo. Technische Universiteit Eindhoven, (2005)

  15. A.J. Gallagher, A.N. Anniadh, K. Bruyere, M. Otténio, H. Xie, M.D. Gilchrist, Dynamic tensile properties of human skin. Int. Res. Council Biomech. Inj. 12(59), 494–502 (2012)

    Google Scholar 

  16. M. Geerligs, A literature review of the mechanical behavior of the stratum corneum, living epidermis, and the subcutaneous fat tissue, vol. Project: Mechanics of Skin Layers (WBSO 20), (2006)

  17. L.E. Edsberg, R.E. Mates, R.E. Baier, M. Lauren, Mechanical characteristics of human skin subjected to static versus cyclic normal pressures. J. Rehabil. Res. Dev. 36(2), 1–13 (1999)

    Google Scholar 

  18. O.A. Shergold, N.A. Fleck, D. Radford, The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int. J. Impact Eng 32(9), 1384–1402 (2006)

    Article  Google Scholar 

  19. C. Edwards, R. Marks, Evaluation of biomechanical properties of human skin. Clin. Dermatol. 13, 375–380 (1995)

    Article  CAS  PubMed  Google Scholar 

  20. M. Żak, P. Kuropka, M. Kobielarz, A. Dudek, K.-K. Katarzyna, S. Szotek, Determination of the mechanical properties of the skin of pig fetuses concerning its structure. Acta Bioeng. Biomech. 13(2), 37–43 (2011)

    PubMed  Google Scholar 

  21. B. Staber, J. Guilleminot, Stochastic hyperelastic constitutive laws and identification procedure for soft biological tissues with intrinsic variability. J. Mech. Behav. Biomed. Mater. 65, 743–752 (2017). https://doi.org/10.1016/j.jmbbm.2016.09.022

    Article  CAS  PubMed  Google Scholar 

  22. R. Tobajas, E. Ibarz, L. Gracia, A comparative study of hyperelastic constitutive models to characterize the behavior of a polymer used in automotive engines, Conference: 2nd International Electronic Conference on Materials, MDPI: 1–17 (2016)

  23. W. Montangna, J.S. Yun, The skin of the domestic pig. J. Investig. Dermatol. 43(1), 11–22 (1964)

    Google Scholar 

  24. W. Meyer, R. Schwarz, K. Neurand, The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig. Curr. Probl. Dermatol. 7, 39–52 (1978)

    Article  CAS  PubMed  Google Scholar 

  25. C. d. D. d. H. C. d. l. Unión, Ley Federal de Sanidad Animal, Última Reforma DOF 16–02–2018, www.diputados.gob.mx/LeyesBiblio/pdf/LFSA_160218.pdf, (2018)

  26. ASTM Standards, Standard Test Method for Tensile Properties of Plastics. D638 -14, DOI: 0.1520/D0638–14, (2010)

  27. S. Madireddy, B. Sista, K. Vemaganti, A Bayesian approach to selecting hyperelastic constitutive models of soft tissue. Comput. Methods Appl. Mech. Eng. 291, 102–122 (2015). https://doi.org/10.1016/j.cma.2015.03.012

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Capurro, F. Barberis, 9 - Evaluating the mechanical properties of biomaterials, in Biomaterials for Bone Regeneration. Novel Techniques and Applications, 2014, 270–323 (2014)

  29. R.W. Ogden, G. Saccomandi, I. Sgura, Fitting hyperelastic models to experimental data. Comput. Mech. 34(6), 484–502 (2004)

    Article  Google Scholar 

  30. M. Mooney, A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Material Degradation Laboratory from the Mechanical Engineering Faculty (UMSNH). H. Aguilar-Rodriguez thanks to CONAHCYT for the received scholarship during his postgrad.

Author information

Authors and Affiliations

Authors

Contributions

GCT: Conceptualization. HAR and JO-O: Methodology. MAEM: Formal analysis and investigation. HAR and JO-O: Writing-original draft. GCT and NNZM: preparation. MLBA and GCT: writing-review and editing. MAEM: Supervision. MLBA and GCT: Resources.

Corresponding author

Correspondence to G. Carbajal-De la Torre.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that they are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Rodriguez, H., la Torre, G.CD., Ortiz-Ortiz, J. et al. Ogden and Mooney-Rivlin hyperelastic models comparison in porcine lobular tissue. MRS Advances (2024). https://doi.org/10.1557/s43580-024-00808-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43580-024-00808-1

Navigation