Skip to main content
Log in

Heterosynaptic plasticity in memristive and memcapacitive lipid bilayers: A snapshot review

  • Review
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Synaptic plasticity refers to activity-dependent synaptic strengthening or weakening between neurons. It is usually associated with homosynaptic plasticity, which refers to a synaptic junction controlled by interactions between specific neurons. Heterosynaptic plasticity, on the other hand, lacks this specificity. It involves much larger populations of synapses and neurons and can be associated with changes in synaptic strength due to nonlocal alterations in the ambient electrochemical environment. This paper presents specific examples demonstrating how variations in the ambient electrochemical environment of lipid membranes can impact the nonlinear dynamical behaviors of memristive and memcapacitive systems in droplet interface bilayers (DIBs). Examples include the use of pH as a modulatory factor that alters the voltage-dependent memristive behavior of alamethicin ion channels in DIB lipid bilayers, and the discovery of long-term potentiation (LTP) in a lipid bilayer-only system after application of electrical stimulation protocols.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2018 American Chemical Society

Fig. 3

Adapted from MRS Bulletin 48, 13–21 (2023)

Fig. 4

Adapted from Ref. 35, Evidence for long-term potentiation in phospholipid membranes © 2022 by Scott et al. Licensed under CC BY 4.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Fig. 5

Copyright 2023 American Chemical Society

Similar content being viewed by others

Data availability

Data available from authors upon request.

References

  1. S. Kumar, R.S. Williams, Z. Wang, Third-order nanocircuit elements for neuromorphic engineering. Nature 585, 518–523 (2020). https://doi.org/10.1038/s41586-020-2735-5

    Article  CAS  PubMed  ADS  Google Scholar 

  2. J. Tang, F. Yuan, X. Shen, Z. Wang, M. Rao, Y. He, Y. Sun, X. Li, W. Zhang, Y. Li, B. Gao, H. Qian, G. Bi, S. Song, J.J. Yang, H. Wu, Bridging biological and artificial neural networks: fundamentals, progress, and challenges. Adv. Mater. 31, 1902761 (2019). https://doi.org/10.1002/adma.20190276

    Article  CAS  Google Scholar 

  3. S. Kumar, X. Wang, J.P. Strachan, Y. Yang, W.D. Lu, Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. 7, 575–591 (2022). https://doi.org/10.1038/s41578-022-00434-z

    Article  Google Scholar 

  4. D.O. Hebb, The organization of behavior: a neuropsychological theory (Wiley, New York, 1949)

    Google Scholar 

  5. C.H. Bailey, M. Giustetto, Y.Y. Huang, R.D. Hawkins, E.R. Kandel, Is heterosynaptic plasticity essential for stabilizing Hebbian plasticity and memory? Nat. Rev. Neurosci. 1, 11–20 (2000). https://doi.org/10.1038/35036191

    Article  CAS  PubMed  Google Scholar 

  6. Y. Wang, J. Yang, Z. Wang, J. Chen, Q. Yang, Z. Lu, Y. Zhou, Y. Zhai, Z. Li, S.-T. Han, Near-infrared annihilation of conductive filaments in quasiplane MoSe2/Bi2Se3 nanosheets for mimicking heterosynaptic plasticity. Small 15, 1805431 (2019). https://doi.org/10.1002/smll.201805431

    Article  CAS  Google Scholar 

  7. V.F. Castellucci, H. Blumenfeld, P. Goelet, E.R. Kandel, Inhibitor of protein synthesis blocks long-term behavioral sensitization in the isolated gill-withdrawal reflex of Aplysia. J. Neurobiol. 20, 1–9 (1989). https://doi.org/10.1002/neu.480200102

    Article  CAS  PubMed  Google Scholar 

  8. Y. Yang, B. Chen, W.D. Lu, Memristive physically evolving networks enabling the emulation of heterosynaptic plasticity. Adv. Mater. 27, 7720–7727 (2015). https://doi.org/10.1002/adma.201503202

    Article  CAS  PubMed  Google Scholar 

  9. Y. Li, E.J. Fuller, J.D. Sugar, S. Yoo, D.S. Ashby, C.H. Bennett, R.D. Horton, M.S. Bartsch, M.J. Marinella, W.D. Lu, A.A. Talin, Filament-free bulk resistive memory enables deterministic analogue switching. Adv. Mater. 32, 2003984 (2020). https://doi.org/10.1002/adma.202003984

    Article  CAS  Google Scholar 

  10. C. Mead, Analog VLSI and neural systems (Addison-Wesley, Boston, 1989)

    Google Scholar 

  11. Y. He, L. Zhu, Y. Zhu, C. Chen, S. Jiang, R. Liu, Y. Shi, Q. Wan, Recent progress on emerging transistor-based neuromorphic devices. Adv. Intell. Syst. 3, 2000210 (2021). https://doi.org/10.1002/aisy.202000210

    Article  Google Scholar 

  12. J. Jiang, T. Xu, J. Lu, L. Sun, Z. Ni, Defect engineering in 2D materials: precise manipulation and improved functionalities. Research 2019, 4641739 (2019). https://doi.org/10.34133/2019/4641739

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. F. Liu, Z. Fan, Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem. Soc. Rev. 52, 1723–1772 (2023). https://doi.org/10.1039/D2CS00931E

    Article  CAS  PubMed  Google Scholar 

  14. M. Tripathi, F. Lee, A. Michail, D. Anestopoulos, J.G. McHugh, S.P. Ogilvie, M.J. Large, A.A. Graf, P.J. Lynch, J. Parthenios, K. Papagelis, S. Roy, M.A.S.R. Saadi, M.M. Rahman, N.M. Pugno, A.A.K. King, P.M. Ajayan, A.B. Dalton, Structural defects modulate electronic and nanomechanical properties of 2D materials. ACS Nano 15, 2520–2531 (2021). https://doi.org/10.1021/acsnano.0c06701

    Article  CAS  PubMed  Google Scholar 

  15. J.S. Najem, G.J. Taylor, R.J. Weiss, M.S. Hasan, G. Rose, C.D. Schuman, A. Belianinov, C.P. Collier, S.A. Sarles, Memristive ion channel-doped biomembranes as synaptic mimics. ACS Nano 12, 4702–4711 (2018). https://doi.org/10.1021/acsnano.8b01282

    Article  CAS  PubMed  Google Scholar 

  16. J.S. Najem, M.S. Hasan, R.S. Williams, R.J. Weiss, G.S. Rose, G.J. Taylor, S.A. Sarles, C.P. Collier, Dynamical nonlinear memory capacitance in biomimetic membranes. Nat. Commun. 10, 3239 (2019). https://doi.org/10.1038/s41467-019-11223-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. H. Bayley, B. Cronin, A. Heron, M.A. Holden, W.L. Hwang, R. Syeda, J. Thompson, M. Wallace, Droplet interface bilayers. Mol. Biosyst. 4, 1191–1208 (2008). https://doi.org/10.1039/B808893D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M.A. Holden, D. Needham, H. Bayley, Functional bionetworks from nanoliter water droplets. J. Am. Chem. Soc. 129, 8650–8655 (2007). https://doi.org/10.1021/ja072292a

    Article  CAS  PubMed  Google Scholar 

  19. G. Villar, A.D. Graham, H. Bayley, A tissue-like printed material. Science 340, 48–52 (2013). https://doi.org/10.1126/science.1229495

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. R. Kawano, Y. Tsuji, K. Kamiya, T. Kodama, T. Osaki, N. Miki, S. Takeuchi, A portable lipid bilayer system for environmental sensing with a transmembrane protein. PLoS ONE 9, e102427 (2014). https://doi.org/10.1371/journal.pone.0102427

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. G. Taylor, M.A. Nguyen, S. Koner, E. Freeman, C.P. Collier, S.A. Sarles, Electrophysiological interrogation of asymmetric droplet interface bilayers reveals surface-bound alamethicin induces lipid flip-flop. Biochim. Biophys. Acta Biomembr. 1861, 335–343 (2019). https://doi.org/10.1016/j.bbamem.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  22. J.B. Boreyko, P. Mruetusatorn, S.A. Sarles, S.T. Retterer, C.P. Collier, Evaporation-induced buckling and fission of microscale droplet interface bilayers. J. Am. Chem. Soc. 135, 5545–5548 (2013). https://doi.org/10.1021/ja4019435

    Article  CAS  PubMed  Google Scholar 

  23. L. Chua, Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  24. M. Montal, P. Mueller, Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. U.S.A. 69, 3561–3566 (1972). https://doi.org/10.1073/pnas.69.12.3561

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. F. Szoka, D. Papahadjopoulos, Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Bioeng. 9, 467–508 (1980). https://doi.org/10.1146/annurev.bb.09.060180.002343

    Article  CAS  PubMed  Google Scholar 

  26. T.R. Heimburg, The capacitance and electromechanical coupling of lipid membranes close to transitions: the effect of electrostriction. Biophys. J. 103, 918–929 (2012). https://doi.org/10.1016/j.bpj.2012.07.010

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. W.T. McClintic, H.L. Scott, N. Moore, M. Farahat, M. Maxwell, C.D. Schuman, D. Bolmatov, F.N. Barrera, J. Katsaras, C.P. Collier, Heterosynaptic plasticity in biomembrane memristors controlled by pH. MRS Bull. 48, 13–21 (2023). https://doi.org/10.1557/s43577-022-00344-z

    Article  CAS  PubMed  ADS  Google Scholar 

  28. R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002). https://doi.org/10.1146/annurev.physiol.64.092501.114547

    Article  CAS  PubMed  Google Scholar 

  29. H. Markram, M. Tsodyks, Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382, 807–810 (1996). https://doi.org/10.1038/382807a0

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Strachan, Z. Li, Q. Wu, M. Barnell, G.-L. Li, H.L. Xin, R.S. Williams, Q. Xia, J.J. Yang, Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017). https://doi.org/10.1038/nmat4756

    Article  CAS  PubMed  ADS  Google Scholar 

  31. R.S. Cantor, The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem. Phys. Lipids 101, 45–56 (1999). https://doi.org/10.1016/s0009-3084(99)00054-7

    Article  CAS  PubMed  Google Scholar 

  32. H.L. Scott, J.M. Westerfield, F.N. Barrera, Determination of the membrane translocation pK of the pH-Low Insertion Peptide. Biophys. J. 113, 869–879 (2017). https://doi.org/10.1016/j.bpj.2017.06.065

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. P.-Y. Deng, V.A. Klyachko, The diverse functions of short-term synaptic plasticity components in synaptic computations. Commun. Integr. Biol. 4, 543–548 (2011). https://doi.org/10.4161/cib.4.5.15870

    Article  PubMed  PubMed Central  Google Scholar 

  34. T.V. Bliss, A.R. Gardner-Medwin, Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J. Physiol. 232, 357–374 (1973). https://doi.org/10.1113/jphysiol.1973.sp010274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. H.L. Scott, D. Bolmatov, P.T. Podar, Z. Liu, J.J. Kinnun, B. Doughty, R. Lydic, R.L. Sacci, C.P. Collier, J. Katsaras, Evidence for long-term potentiation in phospholipid membranes. Proc. Natl. Acad. Sci. U.S.A. 119, e2212195119 (2022). https://doi.org/10.1073/pnas.2212195119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. W.C. Clapp, J.P. Hamm, I.J. Kirk, T.J. Teyler, Translating long-term potentiation from animals to humans: a novel method for noninvasive assessment of cortical plasticity. Biol. Psychiatry 71, 496–502 (2012). https://doi.org/10.1016/j.biopsych.2011.08.021

    Article  PubMed  Google Scholar 

  37. R.L. Sacci, H.L. Scott, Z. Liu, D. Bolmatov, B. Doughty, J. Katsaras, C.P. Collier, Disentangling memristive and memcapacitive effects in droplet interface bilayers using dynamic impedance spectroscopy. Adv. Electron. Mater. 8, 2200121 (2022). https://doi.org/10.1002/aelm.202200121

    Article  CAS  Google Scholar 

  38. H.L. Scott, D. Bolmatov, U.I. Premadasa, B. Doughty, J.-M.Y. Carrillo, R.L. Sacci, M. Lavrentovich, J. Katsaras, C.P. Collier, Cations control lipid bilayer membrane memcapacitance associated with long-term potentiation. ACS Appl. Mater. Interfaces 15, 44533–44540 (2023). https://doi.org/10.1021/acsami.3c09056

    Article  CAS  PubMed  Google Scholar 

  39. R.J. Clarke, C. Lüpfert, Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect. Biophys. J. 76, 2614–2624 (1999). https://doi.org/10.1016/S0006-3495(99)77414-X

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. R.J. Clarke, The dipole potential of phospholipid membranes and methods for detection. Adv. Colloid Interface Sci. 89–90, 263–281 (2001). https://doi.org/10.1016/s0001-8686(00)00061-0

    Article  PubMed  Google Scholar 

  41. E. Deplazes, B.D. Tafalla, C.G. Cranfeld, A. Garcia, Role of ion-phospholipid interactions in zwitterionic phospholipid bilayer ion permeation. J. Phys. Chem. Lett. 11, 6353–6358 (2020). https://doi.org/10.1021/acs.jpclett.0c01479

    Article  CAS  PubMed  Google Scholar 

  42. G.J. Amador, D. van Dijk, R. Kieffer, D. Tam, Hydrodynamic shear dissipation and transmission in lipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 118, e2100156118 (2021). https://doi.org/10.1073/pnas.2100156118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. R.W. Taylor, F. Benz, D.O. Sigle, R.W. Bowman, P. Bao, J.S. Roth, G.R. Heath, S.D. Evans, J.J. Baumberg, Watching individual molecules flex within lipid membranes using SERS. Sci. Rep. 4, 5940 (2014). https://doi.org/10.1038/srep05940

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. M.M. Lozano, J.S. Hovis, F.R. Moss III., S.G. Boxer, Dynamic reorganization and correlation among lipid raft components. J. Am. Chem. Soc. 138, 9996–10001 (2016). https://doi.org/10.1021/jacs.6b05540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D. Bolmatov, C.P. Collier, D. Zav’yalov, T. Egami, J. Katsaras, Real space and time imaging of collective headgroup dipole motions in zwitterionic lipid bilayers. Membranes 13, 442 (2023). https://doi.org/10.3390/membranes13040442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. I. Ermolina, A. Strinkovski, A. Lewis, Y. Feldman, Observation of liquid-crystal-like ferroelectric behavior in a biological membrane. J. Phys. Chem. B 105, 2673–2676 (2001). https://doi.org/10.1021/jp001054y

    Article  CAS  Google Scholar 

  47. A.G. Petrov, Electricity and mechanics of biomembrane systems: flexoelectricity in living membranes. Anal. Chim. Acta 568, 70–83 (2006). https://doi.org/10.1016/j.aca.2006.01.108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J.K. and C.P.C. are supported through the Scientific User Facilities Division of the Department of Energy (DOE) Office of Science, sponsored by the Basic Energy Science (BES) Program, DOE Office of Science, under Contract No. DE-AC05-00OR22725. D.B. is supported through the National Science Foundation, Division of Molecular and Cellular Biosciences (MCB), under contract No. 2219289. Manuscript preparation was performed at the Center for Nanophase Materials Sciences, a US DOE Office of Science User Facility.

Funding

This study is supported by the Basic Energy Sciences, DE-AC05-00OR22725, to C. Patrick Collier.

Author information

Authors and Affiliations

Authors

Contributions

CPC wrote the manuscript. All authors edited and proofread the manuscript.

Corresponding author

Correspondence to C. Patrick Collier.

Ethics declarations

Competing interest

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolmatov, D., Katsaras, J. & Patrick Collier, C. Heterosynaptic plasticity in memristive and memcapacitive lipid bilayers: A snapshot review. MRS Advances (2024). https://doi.org/10.1557/s43580-024-00800-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43580-024-00800-9

Navigation