Skip to main content
Log in

Effect of niobium on corrosion resistance of 75Ti-x-25Ta-xNb alloy

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

β-Ti alloys have been developed because have lower modulus than the titanium, which is desirable for orthopedic bone implants. Among the β-Ti stabilizers, Ta and Nb are preferred because of their biocompatibility. This work investigates the effect generated by the addition of Nb into the Ti25Ta alloy on the corrosion behavior under Hank’s solution. The alloys were fabricated by powder metallurgy and conventional sintering that promotes diffusion of Ta and Nb atoms into Ti, which generates a microstructure compose by β-Ti, α’-Ti, α’’-Ti, and α-Ti phases. The corrosion results indicate similar values of all alloys, which confirms that the microstructure is similar no matter the use of either of β-Ti stabilizers. Concluding that Nb will be better for bone implant applications because is lighter than the Ta.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. A.I. Karayan, S.W. Park, K.M. Lee, Mater. Lett. 62(12–13), 1843–1845 (2008)

    Article  CAS  Google Scholar 

  2. Y.L. Zhou, M. Niinomi, T. Akahori, Mater. Sci. Eng. A 483, 153–156 (2008)

    Article  Google Scholar 

  3. Z. Zhou, X. Liu, Q. Liu, L. Liu, Prep. Biochem. Biotechnol. 39, 81–91 (2008)

    Article  Google Scholar 

  4. W. Kong, S.C. Cox, Y. Lu, V. Villapun, X. Xiao, W. Ma, M. Liu, M.M. Attallah, Mater. Sci. Eng. C 131, 112486 (2021)

    Article  CAS  Google Scholar 

  5. M.T. Mohammed, Z.A. Khan, A.N. Siddiquee, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 8, 726–731 (2014)

    Google Scholar 

  6. H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biomater. 22, 1253–1262 (2001)

    Article  CAS  Google Scholar 

  7. D. Mareci, R. Chelariu, D.M. Gordin, G. Ungureanu, T. Gloriant, Acta Biomater. 5, 3625–3639 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. G. Xu, X. Shen, Y. Hu, P. Ma, K. Cai, Surf. Coat. Technol. 272, 58–65 (2015)

    Article  CAS  Google Scholar 

  9. D.S.M. Vishnu, J. Sure, Y. Liu, R.V. Kumar, C. Schwandt, Mater. Sci. Eng. C 96, 466–478 (2019)

    Article  Google Scholar 

  10. R. Filip, K. Kubiak, W. Ziaja, J. Sieniawski, J. Mater. Process. Technol. 133, 84–89 (2003)

    Article  CAS  Google Scholar 

  11. J. Lu et al., J. Alloys Compd. 727, 1126–1135 (2017)

    Article  CAS  Google Scholar 

  12. Y.L. Zhou, M. Niinomi, Mater. Sci. Eng. C 29, 1061–1065 (2009)

    Article  CAS  Google Scholar 

  13. X. Wang et al., Biomater. 83, 127–141 (2016)

    Article  CAS  Google Scholar 

  14. M. Geetha et al., J. Alloys Compd. 329, 264–271 (2001)

    Article  CAS  Google Scholar 

  15. P.J.S. Buenconsejo, H.Y. Kim, H. Hosoda, S. Miyazaki, Acta Mater. 57(4), 1068–1077 (2009)

    Article  ADS  CAS  Google Scholar 

  16. A.V. Dobromyslov, G.V. Dolgikh, Y. Dutkevich, T.L. Trenogina, Phys. Met. Metallogr. 107, 502–510 (2009)

    Article  ADS  Google Scholar 

  17. S. Mendis et al., Appl. Surf. Sci. 506, 145013 (2020)

    Article  CAS  Google Scholar 

  18. M. Geetha, U.K. Mudali, A.K. Gogia, R. Asokamani, B. Raj, Corr. Sci. 46, 877–892 (2004)

    Article  CAS  Google Scholar 

  19. S. Y. Yu, J. R. Scully. Corrosion, 53, (1997).

  20. A.I. Mardare, A. Savan, A. Ludwig, A.D. Wieck, A.W. Hassel, Corr. Sci. 51, 1519–1527 (2009)

    Article  CAS  Google Scholar 

  21. J. Ureña, S. Tsipas, A.M. Pinto, F. Toptan, E. Gordo, A. Jiménez-Morales, Corr. Sci. 140, 51–60 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the CIC of the UMSNH and the National Laboratory SEDEAM-CONAHCYT, and CONAHCYT Grant CB-2017-2018-11813, for the financial support and the facilities provided for the development of this study.

Funding

This research was supported by [the National Council of Humanities, Science and Technology CONAHCYT via PhD Scholarship of R. Macias, C. Fernandez and I. Alanis], Grant Number [CVU 789772, 1109416 and 737815].

Author information

Authors and Affiliations

Authors

Contributions

RM: Investigation; Methodology. PG: Project administration. JCV-B: Formal analysis. CF-S: Data curation. IA-F: Visualization; Image processing LO: Writing—original draft. OJ: Writing—review & editing. JC: Validation.

Corresponding author

Correspondence to P. Garnica-Gonzalez.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macias, R., Garnica-Gonzalez, P., Villalobos-Brito, J. et al. Effect of niobium on corrosion resistance of 75Ti-x-25Ta-xNb alloy. MRS Advances (2024). https://doi.org/10.1557/s43580-024-00767-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43580-024-00767-7

Navigation