Skip to main content
Log in

Magnetic field induced cooperativity tuning in a Fe(II)-based hybrid spin crossover network grown on 2D surfaces

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Hybrid nanostructures which are made of 2D architecture have potential applicability in many fields. While spin crossover (SCO) materials have bistability in spin states, their application is limited due to structural delicacy. Combining the flatness of 2D template and unique spin state transition property of SCO, we prepared a hybrid nanocomposite that can detect molecular spin transition at elevated temperatures. We choose chemically synthesized reduced graphene oxide (rGO) due to its plethora of available functional groups on the surface to bind SCO nanoparticle networks. Triazole ligand-based (Trz) Fe(II) SCO network is used due to its versatility. By tuning the coverage area of SCO nanoparticle’s network, 4 to 15 nm thickness variation is observed. The hybrid’s magnetic characterization reveals a field induced excited spin state transition with large thermal hysteresis (~ 40K) at high temperature. Due to interfacial substrate interaction, interchain coupling has enhanced, and ferromagnetic ordering is found in the heterostructure.

Graphical abstract

[Fe(Htrz)2(trz)]BF4-based nanoparticle network grown on rGO surface Inset shows spin state transition with large hysteretic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the data related to this work are available from the authors upon reasonable request.

References

  1. A. Bousseksou, G. Molnár, L. Salmon, W. Nicolazzi, Chem. Soc. Rev. 40, 3313 (2011)

    Article  CAS  Google Scholar 

  2. J.F. Létard, P. Guionneau, L. Goux-Capes, P. Gütlich, H.A. Goodwin, Towards spin crossover applications, vol. 235 (Springer, Berlin, 2004), p.221

    Google Scholar 

  3. L. Salmon et al., New J. Chem. 33, 1283 (2009)

    Article  CAS  Google Scholar 

  4. S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, H. Tokoro, Nat. Chem. 3, 564 (2011)

    Article  CAS  Google Scholar 

  5. O. Kahn, C.J. Martinez, Science 279, 44–48 (1998)

    Article  CAS  Google Scholar 

  6. A. Bousseksou, G. Molna’r, P. Demont, J. Menegotto, J. Mater. Chem. 13, 2069–2071 (2003)

    Article  CAS  Google Scholar 

  7. H. Spiering, E. Meissner, H. Koppen, E.W. Muller, P. Gutlich, Chem. Phys. 68, 65 (1982)

    Article  CAS  Google Scholar 

  8. F.J. Valverde-Muñoz, M. Seredyuk, M. Meneses-Sánchez, M. Carmen Muñoz, C. Bartual-Murgui, J.A. Real, Chem. Sci. 10, 3807–3816 (2019)

    Article  Google Scholar 

  9. T. Myamachi, M. Gruber, V. Davesne, M. Bowen, S. Boukari, L. Joly, F. Scheurer, G. Rogez, T.K. Yamada, P. Ohresser, E. Beaurepaire, W. Wulfhekel, Nat. Commun. 3, 938 (2012)

    Article  Google Scholar 

  10. B. Warner, J.C. Oberg, T.G. Gill, F. Hallak, C.F. Hirjibehedin, M. Serri, S. Heutz, M. Arrio, P. Sainctavit, M. Mannini, G. Poneti, R. Sessoli, P. Rosa, J. Phys. Chem. Lett. 4, 1546 (2013)

    Article  CAS  Google Scholar 

  11. C. Fourmental, S. Mondal, R. Banerjee, A. Bellec, Y. Garreau, A. Coati, C. Chacon, Y. Girard, J. Lagoute, S. Rousset, M.-L. Boillot, T. Mallah, C. Enachescu, C. Barreteau, Y.J. Dappe, A. Smogunov, S. Narasimhan, V. Repain, J. Phys. Chem. Lett. 10, 4103 (2019)

    Article  CAS  Google Scholar 

  12. S. Beniwal, S. Sarkar, F. Baier, B. Weber, P. Dowben, A. Enders, J. Phys.: Condens. Matter 32, 324003 (2020)

    CAS  Google Scholar 

  13. M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A.M. Talarico, M.A. Arrio, A. Cornia, D. Gatteschi, R. Sessoli, Nat. Mater. 8, 194–197 (2009)

    Article  CAS  Google Scholar 

  14. R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer, F. Balestro, Nature 488, 357–360 (2012)

    Article  CAS  Google Scholar 

  15. E. Coronado, Nat. Rev. Mater. 5, 87–104 (2020)

    Article  Google Scholar 

  16. M. Gime’nez-Marque’s, M.L. Larreaa, E. Coronado, J. Mater. Chem. C 3, 7946–7953 (2015)

    Article  Google Scholar 

  17. C. Bartual-Murgui, E. Natividad, O. Roubeau, J. Mater. Chem. C 3, 7916 (2015)

    Article  CAS  Google Scholar 

  18. K.S. Kumar, M. Ruben, Coord. Chem. Rev. 346, 176–205 (2017)

    Article  Google Scholar 

  19. L. Kipgen, M. Bernien, F. Tuczek, W. Kuch, Adv. Mater. 33, 2008141 (2021)

    Article  CAS  Google Scholar 

  20. M. Gruber, R. Berndt, Magnetochemistry 6, 35 (2020)

    Article  CAS  Google Scholar 

  21. C. Lochenie, W. Bauer, A.P. Railliet, S. Schlamp, Y. Garcia, B. Weber, Inorg. Chem. 53(21), 11563–11572 (2014)

    Article  CAS  Google Scholar 

  22. O. Roubeau, Chem. Eur. J. 18, 15230–15244 (2012)

    Article  CAS  Google Scholar 

  23. S. Bhattacharya, W. Choi, A. Ghosh, S. Lee, G.D. Lee, S.K. Kim, Nanotechnology 32, 385705 (2021). https://doi.org/10.1088/1361-6528/ac0b62

    Article  CAS  Google Scholar 

  24. S. Bhattacharya, D. Dinda, E. Kumar, R. Thapa, S.K. Saha, J. Appl. Phys. 125, 233904 (2019)

    Article  Google Scholar 

  25. S. Bhattacharya, S.K. Saha, Macromol. Symp. 376(1), 1600183 (2017)

    Article  Google Scholar 

  26. A. Debnath, B. Shaw, S. Bhattacharya, S.K. Saha, J. Phys. D Appl. Phys. 54(20), 205001 (2021)

    Article  CAS  Google Scholar 

  27. C. Majumder, T.K. Mondal, S. Bhattacharya, S.K. Saha, J. Magn. Magn. Mater. 559, 169439 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.B. acknowledges Japan Society for the Promotion of Science for providing JSPS International Postdoctoral Fellowship (ID P20070) during this work. H. T acknowledges Grant-in-aid for Scientific Research from JSPS KAKENHI (Project Numbers 22H00315 and 22F20070) for financial support during this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shatabda Bhattacharya or Hirokazu Tada.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S., Tada, H. Magnetic field induced cooperativity tuning in a Fe(II)-based hybrid spin crossover network grown on 2D surfaces. MRS Advances 8, 894–900 (2023). https://doi.org/10.1557/s43580-023-00639-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00639-6

Navigation