Skip to main content
Log in

Effects of thermomagnetic treatments on the magnetism of Cu–Al–Mn alloys

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Measurements of the magnetic properties of Cu–Al–Mn alloys are presented. We studied three alloys with compositions of the DO3 + L21 two-phase field occurring at low temperatures. In all studied alloys, annealing at intermediate temperatures promotes the development of magnetic properties due to the formation of ferromagnetic L21 particles in a paramagnetic DO3 matrix. The evolution of magnetization with temperature was measured. Upon heating, the magnetization disappears, which is due to demagnetization and dissolution of the L21 precipitates. After subsequent cooling, the Mn-rich alloys regain some magnetization, while the sample with the lowest Mn content has very low magnetization. The magnetic hysteresis measurements show that after cooling, the saturation magnetization decreases and the coercive field increases. The application of an external magnetic field during cooling appears to change the volume fraction and size of the L21 precipitates. The results concerning the formation of the L21 ferromagnetic phase by spinodal decomposition and its demagnetization and dissolution at temperatures above the miscibility gap are discussed. The differences found after the two thermomagnetic treatments are related to the possibility of different kinetics for each composition and to heat treatments with and without applied magnetic fields.

Graphical abstract

Magnetization as a function of temperature and applied field for Cu-25 at % Al-8 at % Mn

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd edn. (CRC-Taylor and Francis, USA, 2004)

    Google Scholar 

  2. J.W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon - Elsevier Science, Netherlands, 2002)

    Google Scholar 

  3. R. Kainuma, S. Takahashi, K. Ishida, Metall. Mater. Trans. A 27, 2187–2195 (1996). https://doi.org/10.1007/BF02651873

    Article  Google Scholar 

  4. E. Obradó, L.I. Manosa, A. Planes, Phys. Rev. B 56(1), 20–23 (1997). https://doi.org/10.1103/PhysRevB.56.20

    Article  Google Scholar 

  5. J.L. Pelegrina, A. Yawny, M. Sade, Shape Mem. Superelast. 4(1), 48–60 (2018). https://doi.org/10.1007/s40830-018-0154-3

    Article  Google Scholar 

  6. P.J. Webster, K.A.R. Ziebeck, in Heusler Alloys, Landolt Bornstein New Series (19c), vol. III, ed. by O. Madelung (Springer, Berlin, 1988), p.75

    Google Scholar 

  7. K. Tajima, Y. Ishikawa, P.J. Webster, M.W. Stringfellow, D. Tocchetti, K.R.A. Ziebeck, J. Phys. Soc. Japan 43, 483–489 (1977). https://doi.org/10.1143/JPSJ.43.483

    Article  CAS  Google Scholar 

  8. M. Getzlaff, Fundamentals of Magnetism (Springer, Berlin, 2008)

    Google Scholar 

  9. M.O. Prado, F.C. Lovey, L. Civale, Acta Mater. 46, 137–147 (1998). https://doi.org/10.1016/S1359-6454(97)00224-3

    Article  CAS  Google Scholar 

  10. M. Şaşmaz, A. Bayri, Y. Aydoğdu, J. Supercond. Nov. Magn. 24, 757–762 (2011). https://doi.org/10.1007/s10948-010-0934-2

    Article  CAS  Google Scholar 

  11. A. Ales, F. Lanzini, Model. Simul. Mater. Sci. Eng. 22, 085007 (2014)

    Article  CAS  Google Scholar 

  12. M. Bouchard, G. Thomas, Acta Metall. 23(12), 1485–1500 (1975). https://doi.org/10.1016/0001-6160(75)90159-5

    Article  CAS  Google Scholar 

  13. R. Kainuma, N. Satoh, X.J. Liu, I. Ohnuma, K. Ishida, J. Alloys Compd. 266(1–2), 191–200 (1998). https://doi.org/10.1016/S0925-8388(97)00425-8

    Article  CAS  Google Scholar 

  14. E. Obrado, C. Frontera, Ll. Mañosa, A. Planes, Phys. Rev. B 58, 14245 (1998). https://doi.org/10.1103/PhysRevB.58.14245

    Article  CAS  Google Scholar 

  15. J. Marcos, L.I. Manosa, A. Planes, R. Romero, M.L. Castro, Philos Mag. 84, 45–68 (2004)

    Article  CAS  Google Scholar 

  16. D. Velazquez, R. Romero, J Therm Anal Calorim 143, 19–25 (2021). https://doi.org/10.1007/s10973-019-09234-0

    Article  CAS  Google Scholar 

  17. D. Velazquez, R. Romero, J Therm Anal Calorim 130, 2007–2013 (2017). https://doi.org/10.1007/s10973-017-6584-x

    Article  CAS  Google Scholar 

  18. G.F. Brazolin, C.C.S. Silva, L.S. Silva, R.A.G. Silva, J. Therm. Anal. Calorim. 134(3), 1405–1412 (2018). https://doi.org/10.1007/s10973-018-7586-z

    Article  CAS  Google Scholar 

  19. D. Velázquez, M.A.E. Chaparro, H.N. Böhnel, R. Romero, F. Lanzini, Mat. Chem. Phys. 246, 122793 (2020). https://doi.org/10.1016/j.matchemphys.2020.122793

    Article  CAS  Google Scholar 

  20. A.N. Titenko, L.D. Demchenko, Effect of annealing in magnetic field on ferromagnetic nanoparticle formation in Cu-Al-Mn alloy with induced martensite transformation. Nanoscale Res. Lett. 11, 237 (2016). https://doi.org/10.1186/s11671-016-1453-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A.N. Titenko, L.D. Demchenko, A.O. Perekos, O. Yu Geramisov, Effect of thermomagnetic treatment on structure and properties of Cu-Al-Mn Alloy. Nanoscale Res. Lett. 12, 285 (2017). https://doi.org/10.1186/s11671-017-2052-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M. Kok, R.A. Qadir, S.S. Mohammed, I.N. Qader, Effect of transition metals (Zr and Hf) on microstructure, thermodynamic parameters, electrical resistivity, and magnetization of CuAlMn-based shape memory alloy. Eur. Phys. J. Plus 137, 62 (2022). https://doi.org/10.1140/epjp/s13360-021-02297-9

    Article  CAS  Google Scholar 

  23. T.S. Justo, L.S. Silva, R.A.G. Silva, Effects of Mn content on the thermal behavior of hypoeutectoid Cu81−xAl19Mnx alloys. J. Therm. Anal. Calorim. 148, 1819–1825 (2023). https://doi.org/10.1007/s10973-022-11860-0

    Article  CAS  Google Scholar 

  24. J.S. Souza, L.S. Silva, C.V.X. Bessa, R.A.G. Silva, Effects of Sn and Gd on the (β13) stability field in the Cu-11%Al-10%Mn alloy. J. Therm. Anal. Calorim. 148, 2357–2366 (2023). https://doi.org/10.1007/s10973-022-11918-z

    Article  CAS  Google Scholar 

  25. A.B. Oliveira, R.A.G. Silva, Thermomagnetic behavior of an as-quenched Cu-Al-Mn-Gd alloy. Mat. Chem. Phys. 209, 112–120 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.072

    Article  CAS  Google Scholar 

  26. F.K. De Medeiros, D. Ferreira de Oliveira, M. Assolin Correa, F. Bohn, J.G.S. Santos, B.A. Silva Guedes de Lima, T. Andrade dos Passos, R. Alves Torquato, R. Medeiros Gomes, Improving the thermomechanical and magnetic properties of CuMnAl Heusler alloy by TiB doping. J Mater Sci: Mater Electron 32, 1369–1378 (2021). https://doi.org/10.1007/s10854-020-04906-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA) and Consejo Nacional de Actividades Científicas y Técnicas (CONICET), PIP N° 2859, for the necessary funding to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Lanzini.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velázquez, D., Chaparro, M.A.E., Arriaga, F. et al. Effects of thermomagnetic treatments on the magnetism of Cu–Al–Mn alloys. MRS Advances 9, 45–50 (2024). https://doi.org/10.1557/s43580-023-00626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00626-x

Navigation