Skip to main content
Log in

Study on thermal transport behavior of magnesium oxide (MgO) nanostructures as lubricant additives in vegetable oils

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Due to harmful impact of petroleum-based fluids and lubricants on the environment and Mankind, vegetable oil-based fluids with incorporation of eco-friendly nanostructures have a great potential to be an alternative lubricant if it possesses proper thermal transport and physico-chemical characteristics. In this study, thermal conductivity, and viscosity performance of vegetable nanolubricants, developed from soybean oil and sunflower oil, modified with homogeneous dispersion of magnesium oxide (MgO) nanostructures were evaluated at various filler fractions (0.01, 0.05, 0.10 and 0.25 wt%) over diversetemperatures. For thermal conductivity evaluation, a transient hot wire (THW) methodology was employed. It is observed that for MgO nanolubricants, thermal conductivity increased as a filler fraction and temperature were increased, reaching a maximum of 22% improvement at 0.25 wt% reinforcement at 50 °C. On the other hand, the viscosity showed a consistent behavior as a function of nanostructures filler fraction and decreased significantly in response to increased evaluating temperature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.F. Chuah, J.J. Klemeš, S. Yusup, A. Bokhari, M.M. Akbar, A review of cleaner intensification technologies in biodiesel production. J. Clean. Prod. 146, 181–193 (2017). https://doi.org/10.1016/j.jclepro.2016.05.017

    Article  CAS  Google Scholar 

  2. J.J. Taha-Tijerina, R. Calderón, B. Rodríguez, Optimization and nanoreinforcements of lubricant Concentration for steel sheet forming process. Int. J. Mod. Manuf. Technol. 13(2), 137–142 (2021). https://doi.org/10.54684/ijmmt.2021.13.2.137

    Article  Google Scholar 

  3. R.A. Kazeem, D.A. Fadare, O.M. Ikumapayi, A.A. Adediran, S.J. Aliyu, S.A. Akinlabi, T.C. Jen, E.T. Akinlabi, Advances in the application of vegetable-oil-based cutting fluids to sustainable machining operations: a review. Lubricants 10(4), 69 (2022). https://doi.org/10.3390/lubricants10040069

    Article  CAS  Google Scholar 

  4. J.J. Taha-Tijerina, S. Shaji, S.K. Sharma, M.I. Mendivil-Palma, K. Aviña, Tribological and thermal transport of Ag-vegetable nanofluids prepared by laser ablation. Appl. Sci. 10(5), 1779 (2020). https://doi.org/10.3390/app10051779

    Article  CAS  Google Scholar 

  5. K.M.B. Karthikeyan, J. Vijayanand, K. Arun, V.S. Rao, Thermophysical and wear properties of eco-friendly nano lubricants. Mater. Today Proc. 39, 285–291 (2021). https://doi.org/10.1016/j.matpr.2020.07.128

    Article  CAS  Google Scholar 

  6. I.P. Okokpujie, L.K. Tartibu, J.E. Sinebe, A.O.M. Adeoye, E.T. Akinlabi, Comparative study of rheological effects of vegetable oil-lubricant, TiO2, MWCNTs nano-lubricants, and machining parameters’ influence on cutting force for sustainable metal cutting process. Lubricants 10(4), 54 (2022). https://doi.org/10.3390/lubricants10040054

    Article  CAS  Google Scholar 

  7. Ş Şirin, T. Kıvak, Performances of different eco-friendly nanofluid lubricants in the milling of Inconel X-750 superalloy. Tribol. Int. 137, 180–192 (2019). https://doi.org/10.1016/j.triboint.2019.04.042

    Article  CAS  Google Scholar 

  8. J.J. Taha-Tijerina, K. Aviña, N.A. Ulloa-Castillo, D.V. Melo-Maximo, Thermal transport and physical characteristics of silver-reinforced biodegradable nanolubricant. Sustainability 15, 8795 (2023). https://doi.org/10.3390/su15118795

    Article  CAS  Google Scholar 

  9. J. Lee, H. Lee, Y.J. Baik, J. Koo, Quantitative analyses of factors affecting thermal conductivity of nanofluids using an improved transient hot-wire method apparatus. Int. J. Heat Mass Transf. 89, 116–123 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.064

    Article  CAS  Google Scholar 

  10. A. Kalantari, M. Abbasi, A.M. Hashim, Enhancement of thermal conductivity of size-controlled silver nanofluid. Mater. Today Proc. 7, 612–618 (2019). https://doi.org/10.1016/j.matpr.2018.12.015

    Article  CAS  Google Scholar 

  11. F. Mashali, E.M. Languri, J. Davidson, D. Kerns, Diamond nanofluids: microstructural analysis and heat transfer study. Heat Transf. Eng. 42(6), 479–491 (2020). https://doi.org/10.1080/0145763220191707388

    Article  Google Scholar 

  12. L. Phor, T. Kumar, M. Saini, V. Kumar, Al2O3-water nanofluids for heat transfer application. MRS Adv. 4(28–29), 1611–1619 (2019). https://doi.org/10.1557/adv.2019.172

    Article  CAS  Google Scholar 

  13. M.R. Bindhu, M. Umadevi, M.K. Micheal, M.V. Arasu, N.A. Al-Dhabi, Structural, morphological and optical properties of MgO nanoparticles for antibacterial applications. Mater. Lett. 166, 19–22 (2016). https://doi.org/10.1016/j.matlet.2015.12.020

    Article  CAS  Google Scholar 

  14. M. Fernandes, R.B.K. Singh, T. Sarkar, P. Singh, S.R. Pratap, Recent applications of magnesium oxide (MgO) nanoparticles in various domains. Adv. Mater. Lett. 11(8), 1–10 (2020). https://doi.org/10.5185/amlett.2020.081543

    Article  CAS  Google Scholar 

  15. H. Majdoubi, A.A. Alqadami, R.E.K. Billah, M. Otero, B.H. Jeon, H. Hannache, Y. Tamraoui, M.A. Khan, Chitin-based magnesium oxide biocomposite for the removal of methyl orange from water. Int. J. Environ. Res. Public Health 20(1), 831 (2023). https://doi.org/10.3390/ijerph20010831

    Article  CAS  Google Scholar 

  16. Y. Singh, G.K. Badhotiya, M. Gwalwanshi, P. Negi, A. Bist, Magnesium oxide (MgO) as an additive to the neem oil for efficient lubrication. Mater. Today Proc. 46, 10478–10481 (2021). https://doi.org/10.1016/j.matpr.2020.12.1181

    Article  CAS  Google Scholar 

  17. M. Gamal, M.S. Radwan, I.G. Elgizawy, M.H. Shedid, Experimental studies on thermophysical properties of ethylene glycol/water-based MgO nanofluids. J. Phys. Conf. Ser. 2299, 012022 (2022). https://doi.org/10.1088/1742-6596/2299/1/012022

    Article  Google Scholar 

  18. H. Xie, W. Yu, W. Chen, MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. J. Exp. Nanosci. 5(5), 463–472 (2010). https://doi.org/10.1080/17458081003628949

    Article  CAS  Google Scholar 

  19. G. Żyła, Viscosity and thermal conductivity of MgO–EG nanofluids: experimental results and theoretical models predictions. J. Therm. Anal. Calorim. 129, 171–180 (2017). https://doi.org/10.1007/s10973-017-6130-x

    Article  CAS  Google Scholar 

  20. M. Anish, T. Arunkumar, B. Kanimozhi, J. Jayaprabakar, N. Beemkumar, V. Jayaprakash, Experimental exploration and theoretical certainty of thermal conductivity and viscosity of MgO-therminol 55 nanofluid. Energ. Source Part A 41(4), 451–467 (2018). https://doi.org/10.1080/1556703620181520329

    Article  Google Scholar 

  21. M. Esfe, M. Afrand, A. Karimipour, W.M. Yan, N. Sina, An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol. Int. Commun. Heat Mass Transf. 67, 173–175 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2015.07.009

    Article  CAS  Google Scholar 

  22. R. Padmini, K.P. Vamsi, M.R.G. Krishna, Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel. Tribol. Int. 94, 490–501 (2016). https://doi.org/10.1016/j.triboint.2015.10.006

    Article  CAS  Google Scholar 

  23. J.J. Taha-Tijerina, K. Aviña, J.M. Martínez, P.Y. Arquieta-Guillén, M. González-Escobedo, Carbon nanotori structures for thermal transport applications on lubricants. Nanomaterials 11(5), 1158 (2021). https://doi.org/10.3390/nano11051158

    Article  CAS  Google Scholar 

  24. A.V. Minakov, V.Y. Rudyak, M.I. Pryazhnikov, Systematic experimental study of the viscosity of nanofluids. Heat Transf. Eng. 42(12), 1024–1040 (2020). https://doi.org/10.1080/0145763220201766250

    Article  Google Scholar 

  25. W.K. Shafi, M.S. Charoo, An overall review on the tribological, thermal and rheological properties of nanolubricants. Tribol. Mater. Surf. Interfaces 15, 20–54 (2020). https://doi.org/10.1080/1751583120201785233

    Article  Google Scholar 

  26. W. Ahmed Abdalglil Mustafa, F. Dassenoy, M. Sarno, A. Senatore, A review on potentials and challenges of nanolubricants as promising lubricants for electric vehicles. Lubr. Sci. 34(1), 1–29 (2022). https://doi.org/10.1002/ls.1568

    Article  Google Scholar 

  27. M. Hothar, Z. Wu, B. Sundén, Thermal conductivity of ionic liquid-based nanofluids containing magnesium oxide and aluminum oxide nanoparticles. Heat Transf. Eng. 43(21), 1806–1819 (2021). https://doi.org/10.1080/0145763220212016133

    Article  Google Scholar 

  28. H.K. Judran, A.G.T. Al-Hasnawi, F.N. Zubaidi, W.A.K. Al-Maliki, F. Alobaid, B. Epple, A high thermal conductivity of MgO-H2O nanofluid prepared by two-step technique. Appl. Sci. 12(5), 2655 (2022). https://doi.org/10.3390/app12052655

    Article  CAS  Google Scholar 

  29. J.J. Taha-Tijerina, K. Aviña, V. Padilla-Gainza, A. Akundi, Halloysite reinforced natural esters for energy applications. Lubricants 11(2), 65 (2023). https://doi.org/10.3390/lubricants11020065

    Article  CAS  Google Scholar 

  30. A. Utomo, N.J. Alderman, G.A. Padron, N.G. Özcan-Taşkın, Effects of particle concentration and dispersion rheology on the breakup of nanoparticle clusters through ultrasonication. Chem. Eng. Res. Des. 191, 301–312 (2023). https://doi.org/10.1016/j.cherd.2023.01.041

    Article  CAS  Google Scholar 

  31. A. Asadi, F. Pourfattah, Heat transfer performance of two oil-based nanofluids containing ZnO and MgO nanoparticles; a comparative experimental investigation. Powder Technol. 343, 296–308 (2019). https://doi.org/10.1016/j.powtec.2018.11.023

    Article  CAS  Google Scholar 

  32. A. Kotia, P. Rajkhowa, G.S. Rao, S.K. Ghosh, Thermophysical and tribological properties of nanolubricants: a review. Heat Mass Transf. 54, 3493–3508 (2018). https://doi.org/10.1007/s00231-018-2351-1

    Article  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the support received by Dr. Karen Lozano and her research group, the University of Texas Rio Grande Valley and the National Science Foundation under DMR PREM Grant 2122178.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Taha-Tijerina.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha-Tijerina, J., Jogesh, K., Padilla-Gainza, V. et al. Study on thermal transport behavior of magnesium oxide (MgO) nanostructures as lubricant additives in vegetable oils. MRS Advances 8, 969–975 (2023). https://doi.org/10.1557/s43580-023-00607-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00607-0

Navigation