Skip to main content
Log in

Performance of local date palm fibers in cementitious materials

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Reinforced concrete structures have a limited lifespan and need repair during their use. The success of the repair depends on the characteristics of the repair material and repair methods. Repair by ready-made mortar is extensively used, although these mortars are expensive and often incorporate small volumes of synthetic fibres. This article aims to develop a durable repair mortar with low environmental impact based on 1% alkaline or hydrothermal treated or untreated date palm fibers (DP) of 10 and 30 mm in length combined with 15% of slag or natural pozzolan as cement replacement material. Compressive and flexural strength, bond strength by slant shear and pull-off tests, total shrinkage, and thermal conductivity were investigated. A reduction in shrinkage and thermal conductivity were observed and an increase in bond strength following the addition of treated PD fibers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data is available upon reasonable request.

References

  1. Y. Yu, Y.X. Zhang, A. Liu, J. Fu, Performance decay analysis of cementitious composite cladding structure under stochastic aging. Eng. Struct. 273, 115064 (2022). https://doi.org/10.1016/j.engstruct.2022.115064

    Article  Google Scholar 

  2. K. Gadri, A. Guettala, Evaluation of bond strength between sand concrete as new repair material and ordinary concrete substrate (The surface roughness effect). Constr. Build. Mater. 157, 1133–1144 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.183

    Article  CAS  Google Scholar 

  3. W.L. Baloch, H. Siad, M. Lachemi, M. Sahmaran, A review on the durability of concrete-to-concrete bond in recent rehabilitated structures. J. Build. Eng. 44, 103315 (2021). https://doi.org/10.1016/j.jobe.2021.103315

    Article  Google Scholar 

  4. O. Benaimeche, N.T. Seghir, Ł Sadowski, M. Mellas, The utilization of vegetable fibers in cementitious materials. Encycl. Renew. Sustain. Mater. 2013, 649–662 (2020). https://doi.org/10.1016/b978-0-12-803581-8.11596-6

    Article  Google Scholar 

  5. V. Laverde, A. Marin, J.M. Benjumea, M. Rincón Ortiz, Use of vegetable fibers as reinforcements in cement-matrix composite materials: a review. Constr. Build. Mater. (2022). https://doi.org/10.1016/j.conbuildmat.2022.127729

    Article  Google Scholar 

  6. Y. Kumar Yadav, S. Dixit, G. Dixit, A. Namdev, M. Baghel, A. Kumar, Fabrication and mechanical behavior of date palm fibers reinforced high performance polymer composite. Mater. Today Proc. 75, 46–50 (2023). https://doi.org/10.1016/j.matpr.2023.02.147

    Article  CAS  Google Scholar 

  7. M. Chakhari, N. Salem, J. Neji, Optimization of the mechanical and physical properties of lightweight concrete reinforced with date palm and sisal fibers. Appl. Mech. Mater. 913, 15–22 (2023). https://doi.org/10.4028/p-552q8e

    Article  Google Scholar 

  8. S. Pons Ribera, R. Hamzaoui, J. Colin, L. Bessette, M. Audouin, Valorization of vegetal fibers (Hemp, Flax, Miscanthus and Bamboo) in a fiber reinforced screed (FRS) formulation. Materials 16, 2203 (2023). https://doi.org/10.3390/ma16062203

    Article  CAS  Google Scholar 

  9. W. Yahiaoui, A. Kenai, B. Menadi, S. Kenai, Mechanical performance and durability of date palm fibers repair mortar. Open Civ. Eng. J. 16(1), 1–16 (2022). https://doi.org/10.2174/18741495-v16-e2207271

    Article  Google Scholar 

  10. C. Sawsen, K. Fouzia, B. Mohamed, G. Moussa, Effect of flax fibers treatments on the rheological and the mechanical behavior of a cement composite. Constr. Build. Mater. 79, 229–235 (2015). https://doi.org/10.1016/j.conbuildmat.2014.12.091

    Article  Google Scholar 

  11. X. Xian, M. Mahoutian, S. Zhang, Y. Shao, D. Zhang, J. Liu, Converting industrial waste into a value-added cement material through ambient pressure carbonation. J. Environ. Manage 325, 116603 (2023). https://doi.org/10.1016/j.jenvman.2022.116603

    Article  CAS  Google Scholar 

  12. M.I. Gomes, P. Faria, T.D. Gonçalves, Earth-based mortars for repair and protection of rammed earth walls. Stabilization with mineral binders and fibers. J. Clean. Prod. 172, 2401–2414 (2018). https://doi.org/10.1016/j.jclepro.2017.11.170

    Article  Google Scholar 

  13. A. Laborel-Préneron, J.E. Aubert, C. Magniont, C. Tribout, A. Bertron, Plant aggregates and fibers in earth construction materials: a review. Constr. Build. Mater. 111, 719–734 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.119

    Article  Google Scholar 

  14. S.O. Bamaga, The influence of silica fume on the properties of mortars containing date palm fibers. Fibers (2022). https://doi.org/10.3390/fib10050041

    Article  Google Scholar 

  15. G. Dreux, J. Festa, New guide to concrete and its constituents, Eighth edition, Eyrolles, France, 1998.

  16. AFNOR, NF EN 196-1, Cement test methods—part 1: determination of resistance, (September 2016).

  17. AFNOR, NF P15-433, Cement test methods—determination of shrinkage and swelling, (February 1994).

  18. AFNOR, NF EN 993-15, Test methods for dense shaped refractory products—Part 15: determination of thermal conductivity by the hot wire method (parallel), (October 2005)

  19. ASTM C1583M-13, Standard test method for tensile strength of concrete surfaces and the bond strength or tensile strength of concrete repair and overlay materials by direct tension (Pull-off Method), (2020)

  20. ASTM C882, Standard test method for bond strength of epoxy-resin systems used with concrete bond strength of epoxy-resin systems used with concrete by slant shear (2009)

  21. K.H. Mo, C.S. Bong, U.J. Alengaram, M.Z. Jumaat, S.P. Yap, Thermal conductivity, compressive and residual strength evaluation of polymer fibre-reinforced high volume palm oil fuel ash blended mortar. Constr. Build. Mater. 130, 113–121 (2017). https://doi.org/10.1016/j.conbuildmat.2016.11.005

    Article  CAS  Google Scholar 

  22. M. Boumhaout, L. Boukhattem, H. Hamdi, B. Benhamou, F. Ait Nouh, Thermomechanical characterization of a bio-composite building material: mortar reinforced with date palm fibers mesh. Constr. Build. Mater. 135, 241–250 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.217

    Article  Google Scholar 

  23. B. Çomak, A. Bideci, Ö. Salli Bideci, Effects of hemp fibers on characteristics of cement based mortar. Constr. Build. Mater. 169, 794–799 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.029

    Article  Google Scholar 

  24. F.M. Al-oqla, S.M. Sapuan, Natural fi ber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 66, 347–354 (2014). https://doi.org/10.1016/j.jclepro.2013.10.050

    Article  CAS  Google Scholar 

  25. S. Abani, F. Hafsi, A. Kriker, A. Bali, Valorisation of date palm fibres in Sahara constructions. Energy Procedia 74, 289–293 (2015). https://doi.org/10.1016/j.egypro.2015.07.608

    Article  Google Scholar 

  26. A. Kareche, B. Agoudjil, B. Haba, A. Boudenne, Study on the durability of new construction materials based on mortar reinforced with date palm fibers wastes. Waste Biomass Valoriz. 11(7), 3801–3809 (2020). https://doi.org/10.1007/s12649-019-00669-y

    Article  CAS  Google Scholar 

  27. AFNOR, NF EN 1766, Norme En vigueur Produits et systèmes pour la protection et la réparation des structures en béton—Méthodes d’essai—Bétons de référence pour essais, (2017)

  28. B. Krobba, M. Bouhicha, S. Kenai, L. Courard, Formulation of low cost eco-repair mortar based on dune sand and Stipa tenacissima microfibers plant. Constr. Build. Mater. 171, 950–959 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.200

    Article  Google Scholar 

  29. A. Kenai, M. Rezagui, W. Yahiaoui, B. Menadi, S. Kenai, Performance of repair mortar with natural fibers. MRS Adv. 5(25), 1295–1304 (2020). https://doi.org/10.1557/adv.2020.178

    Article  CAS  Google Scholar 

  30. C. Ozyildirim and M.M. Sprinkel, Evaluation of high performance concrete overlays placed on route 60 over lynnhaven inlet in virginia, Virginia Transp. Res. Counc. Charlottesville, Virginia (2000)

  31. C. Jiang, S. Huang, Y. Zhu, Y. Lin, D. Chen, Effect of polypropylene and basalt fiber on the behavior of mortars for repair applications. Adv. Mater. Sci. Eng. 2016, 14–16 (2016). https://doi.org/10.1155/2016/5927609

    Article  CAS  Google Scholar 

  32. A. Benyahia, M. Ghrici, S. Choucha, A. Omran, Characterization of fiber reinforced self-consolidating mortars for use in patching damaged concrete. Lat. Am. J. Solids Struct. 14(6), 1124–1142 (2017). https://doi.org/10.1590/1679-78253718

    Article  Google Scholar 

Download references

Funding

This work received support from Direction Générale de la Recherche Scientifique et du Développement Technologique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kenai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Said Kenai was an editor of this journal during the review and decision stage. For the MRS Advances policy on review and publication of manuscripts authored by editors, please refer to mrs.org/editor-manuscripts.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouhous, C., Yahiaoui, W. & Kenai, S. Performance of local date palm fibers in cementitious materials. MRS Advances 8, 583–590 (2023). https://doi.org/10.1557/s43580-023-00575-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00575-5

Navigation