Skip to main content
Log in

Microstructural characterization and tensile strength of TiC/Ni-20Cr composite through the small punch test technique

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The tensile strength and fracture mode of the TiC/Ni-20Cr composite were determined through the small punch technique (SPT). The composite was fabricated by infiltrating the liquid matrix into porous ceramic compacts. The technique allowed a high reinforcement content of 60 vol%, observing a dissolution–precipitation phenomenon that caused the formation of secondary TiC on the original TiC surfaces. To determine the tensile strength by SPT, the correlation constant that harmonizes the tensile strength and shear strength was evaluated by testing control samples of nickel, copper, and 1018 cold roll steel. The tensile strength of the Ni-20Cr alloy was 515.9 MPa, and the composite was 326.6 MPa. Due to the high reinforcement content, the plastic deformation of the Ni-20Cr alloy specimen was four times higher in displacement than the composite specimen. The composite presented partial fracture of the reinforcement particles and detachment through the metal-ceramic interface, showing an approximately brittle behavior.

Graphical abstract

Small punch test to determine the shear strength of a TiC/Ni-20Cr composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. S.L. Chittewar, N.G. Patil, Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2020.10.614

    Article  Google Scholar 

  2. S.R. Ghodke, B.K. Dutta, P.V. Durgaprasad, Fusion Eng. Des. (2020). https://doi.org/10.1016/j.fusengdes.2020.111786

    Article  Google Scholar 

  3. N. Leclerc, A. Khosravani, S. Hashemi, D.B. Miracle, S.R. Kalidindi, Acta Mater. (2021). https://doi.org/10.1016/j.actamat.2020.116501

    Article  Google Scholar 

  4. C. Yang, T. Wei, O. Muránsky, D. Carr, H. Huang, X. Zhou, Mater. Charact. (2018). https://doi.org/10.1016/j.matchar.2018.02.024

    Article  Google Scholar 

  5. J. Calaf Chica, P.M. Bravo Díez, M. Preciado Calzada, Mater. Des. (2018). https://doi.org/10.1016/j.matdes.2018.03.064

    Article  Google Scholar 

  6. P. Hähner, C. Soyarslan, B. Gülçimen Çakan, S. Bargmann, Mater. Des. (2019). https://doi.org/10.1016/j.matdes.2019.107974

    Article  Google Scholar 

  7. J. Mak et al., Adv. Mater. Res. (2008). https://doi.org/10.4028/www.scientific.net/amr.47-50.738

    Article  Google Scholar 

  8. D.T.S. Lewis, R.J. Lancaster, S.P. Jeffs, H.W. Illsley, S.J. Davies, G.J. Baxter, Mater. Sci. Eng. A. (2019). https://doi.org/10.1016/j.msea.2019.03.115

    Article  Google Scholar 

  9. J. Zhong, M. Song, K. Guan, P. Dymacek, Int. J. Mech. Sci. (2020). https://doi.org/10.1016/j.ijmecsci.2019.105195

    Article  Google Scholar 

  10. M.F. Moreno, Mater. Des. (2018). https://doi.org/10.1016/j.matdes.2018.07.065

    Article  Google Scholar 

  11. G.S. Pradeep Kumar, P.G. Koppad, R. Keshavamurthy, M. Alipour, Arch. Civ. Mech. Eng. (2017). https://doi.org/10.1016/j.acme.2016.12.006

    Article  Google Scholar 

  12. C. Fenghong, C. Chang, W. Zhenyu, T. Muthuramalingam, G. Anbuchezhiyan, SILICON (2019). https://doi.org/10.1007/s12633-018-0051-6

    Article  Google Scholar 

  13. Y. Cai et al., Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2020.148794

    Article  Google Scholar 

  14. X. Guo et al., Mater. Sci. Eng. A. (2018). https://doi.org/10.1016/j.msea.2017.11.068

    Article  Google Scholar 

  15. C.A. León-Patiño, M. Braulio-Sánchez, E.A. Aguilar-Reyes, E. Bedolla-Becerril, A. Bedolla-Jacuinde, Wear (2019). https://doi.org/10.1016/j.wear.2019.01.074

    Article  Google Scholar 

  16. M.A. Téllez-Villaseñor, C.A. León-Patiño, E.A. Aguilar-Reyes, A. Bedolla-Jacuinde, Wear (2021). https://doi.org/10.1016/j.wear.2021.203667

    Article  Google Scholar 

  17. C.A. León-Patiño, M. Braulio-Sánchez, E.A. Aguilar-Reyes, E. Bedolla-Becerril, J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.04.132

    Article  Google Scholar 

  18. R.J. Gonzalez-Esquivel, C.A. Leon-Patiño, R. Galvan-Martinez, E.A. Aguilar-Reyes, MRS Adv. (2019). https://doi.org/10.1557/adv.2020.68

    Article  Google Scholar 

  19. M.F. Moreno, M. Balog, P. Krizik, Rev. Mater. (2018). https://doi.org/10.1590/S1517-707620180002.0357

    Article  Google Scholar 

  20. F. Dobeš, P. Dymáček, M. Besterci, Mater. Sci. Eng. A. (2015). https://doi.org/10.1016/j.msea.2014.12.054

    Article  Google Scholar 

  21. C.A. León, R.A.L. Drew, Mater. Lett. (2002). https://doi.org/10.1016/S0167-577X(02)00619-5

    Article  Google Scholar 

  22. ASTM E1876-99, Standard test method for dynamic young's modulus, shear modulus, and Poisson’s ratio by impulse excitation of vibration, https://doi.org/10.1520/E1876-99. (2001).

  23. ASTM E384-17, Standard test method for microindentation hardness of materials, ASTM International, West Conshohocken, PA, 2017, https://doi.org/10.1520/E0384-17, www.astm.org. (2017).

  24. M. Kimura, A. Fuji, Y. Konno, S. Itoh, Y.C. Kim, Mater. Des. (2014). https://doi.org/10.1016/j.matdes.2014.01.021

    Article  Google Scholar 

  25. D. Corona, O. Giannini, S. Guarino, G.S. Ponticelli, M. Zarcone, J. Manuf. Process. (2022). https://doi.org/10.1016/j.jmapro.2022.02.023

    Article  Google Scholar 

  26. K.D. Salman, I.O.P. Conf, Ser. Mater. Sci. Eng. (2019). https://doi.org/10.1088/1757-899X/551/1/012007

    Article  Google Scholar 

  27. Q. Qi, Y. Liu, H. Zhang, J. Zhao, Z. Huang, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.03.301

    Article  Google Scholar 

  28. R.M. German, Particle packing characteristics (Metal Powder Industry, Princeton, 1989)

    Google Scholar 

  29. H. Kurita, K. Sakayanagi, S. Kikuchi, N. Yodoshi, S. Gourdet, F. Narita, Mater. Des. Process. Commun. (2019). https://doi.org/10.1002/mdp2.80

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Council of Science and Technology (CONACYT-Mexico) through the Grant 222255 and CIC-UMSNH Mexico. CONACYT is recognized for the scholarship granted to Rocío Jazmín Gonzaéz Esquivel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocío Jazmín González-Esquivel.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Carlos A. León-Patiño was an editor of this journal during the review and decision stage. For the MRS Advances policy on review and publication of manuscripts authored by editors, please refer to https://www.mrs.org/editor-manuscripts.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

León-Patiño, C.A., González-Esquivel, R.J., Hernández-Huerta, D.U. et al. Microstructural characterization and tensile strength of TiC/Ni-20Cr composite through the small punch test technique. MRS Advances 8, 46–51 (2023). https://doi.org/10.1557/s43580-022-00484-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00484-z

Navigation