Skip to main content
Log in

ZnS-doped TiO2 photocatalysts for 4-chlorophenol photodegradation in water

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The TiO2-X% ZnS photocatalysts, where X represents the molar percentage of ZnS (3%, 5%, 10%, and 15%), were synthesized using the one-step sol–gel method. In a Batch-type reactor, under the irradiation of a mercury lamp (λ = 254 nm, Pen-Ray), degradations of 55 ppm 4-chlorophenol were obtained at 400 min with the synthesized photocatalysts: 90% (TiO2), 60% (3% ZnS), 66% (5% ZnS), 74% (10% ZnS), and 58% (15% ZnS). ZnS addition in the photocatalysts inhibits a good performance, being the support, TiO2, the most photoactive material when irradiating in the ultraviolet region. TiO2 showed suppression of hole electron pair recombination and high electron storage, outstanding separation, and transfer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C. Descorme, Catalytic wastewater treatment: Oxidation and reduction processes. Recent studies on chlorophenols. Catal. Today 297, 324–334 (2017). https://doi.org/10.1016/j.cattod.2017.03.039

    Article  CAS  Google Scholar 

  2. F. Li, P. Du, W. Liu, X. Li, H. Ji, J. Duan, D. Zhao, Hydrothermal synthesis of graphene grafted titania/titanate nanosheets for photocatalytic degradation of 4-chlorophenol: solar-light-driven photocatalytic activity and computational chemistry analysis. Chem. Eng. J. 331, 685–694 (2018). https://doi.org/10.1016/j.cej.2017.09.036

    Article  CAS  Google Scholar 

  3. A. Kuleyin, Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite. J. Hazard. Mater. 144(1–2), 307–315 (2007). https://doi.org/10.1016/j.jhazmat.2006.10.036

    Article  CAS  Google Scholar 

  4. Z. Duan, W. Zhang, M. Lu, Z. Shao, W. Huang, J. Li, Y. Li, J. Mo, Y. Li, C. Chen, Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol. Carbon 167, 351–363 (2020). https://doi.org/10.1016/j.carbon.2020.05.106

    Article  CAS  Google Scholar 

  5. C. Ferreiro, J. Sanz, N. Villota, A. de Luis, J.I. Lombraña, Kinetic modelling for concentration and toxicity changes during the oxidation of 4-chlorophenol by UV/H2O2. Sci. Rep. 11(1), 1–15 (2021). https://doi.org/10.1038/s41598-021-95083-7

    Article  CAS  Google Scholar 

  6. H. Liu, H.K. Shon, X. Sun, S. Vigneswaran, H. Nan, Preparation and characterization of visible light responsive Fe2O3–TiO2 composites. Appl. Surf. Sci. 257(13), 5813–5819 (2011). https://doi.org/10.1016/j.apsusc.2011.01.110

    Article  CAS  Google Scholar 

  7. S. Chen, W. Zhao, W. Liu, S. Zhang, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO2. Appl. Surf. Sci. 255(5), 2478–2484 (2008). https://doi.org/10.1016/j.apsusc.2008.07.115

    Article  CAS  Google Scholar 

  8. D. Gupta, R. Chauhan, N. Kumar, V. Singh, V.C. Srivastava, P. Mohanty, T.K. Mandal, Enhancing photocatalytic degradation of quinoline by ZnO: TiO2 mixed oxide: Optimization of operating parameters and mechanistic study. J. Environ. Manage. 258, 110032 (2020). https://doi.org/10.1016/j.jenvman.2019.110032

    Article  CAS  Google Scholar 

  9. A. Jbeli, A.M. Ferraria, do Rego, A. M. B., Boufi, S., & Bouattour, S., Hybrid chitosan-TiO2/ZnS prepared under mild conditions with visible-light driven photocatalytic activity. Int. J. Biol. Macromol. 116, 1098–1104 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.141

    Article  CAS  Google Scholar 

  10. A. Franco, M.C. Neves, M.R. Carrott, M.H. Mendonça, M.I. Pereira, O.C. Monteiro, Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites. J. Hazard. Mater. 161(1), 545–550 (2009). https://doi.org/10.1016/j.jhazmat.2008.03.133

    Article  CAS  Google Scholar 

  11. Z.D. Meng, K. Ullah, L. Zhu, S. Ye, W.C. Oh, Synthesis and Characterization of ZnS and ZnS/TiO 2 Nanocomposites and Their Enhanced Photo-decolorization of MB and 1, 5-Diphenyl Carbazide. J. Korean Ceram. Soc. 51(4), 307–311 (2014). https://doi.org/10.4191/kcers.2014.51.4.307

    Article  CAS  Google Scholar 

  12. U. Sattar, M. Ikram, M. Junaid, M. Aqeel, M. Imran, S. Ali, Annealing effect on synthesized ZnS/TiO2 nanocomposite for treatment of industrial wastewater. Mater. Res. Express 6(11), 115050 (2019). https://doi.org/10.1088/2053-1591/ab476c

    Article  CAS  Google Scholar 

  13. Y. Xiaodan, W. Qingyin, J. Shicheng, G. Yihang, Nanoscale ZnS/TiO2 composites: preparation, characterization, and visible-light photocatalytic activity. Mater. Charact. 57(4–5), 333–341 (2006). https://doi.org/10.1016/j.matchar.2006.02.011

    Article  CAS  Google Scholar 

  14. M.B. Marami, M. Farahmandjou, B. Khoshnevisan, Sol–gel synthesis of Fe-doped TiO2 nanocrystals. J. Electron. Mater. 47(7), 3741–3748 (2018). https://doi.org/10.1007/s11664-018-6234-5

    Article  CAS  Google Scholar 

  15. V. Štengl, S. Bakardjieva, N. Murafa, V. Houšková, K. Lang, Visible-light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogeneous hydrolysis. Microporous Mesoporous Mater. 110(2–3), 370–378 (2008). https://doi.org/10.1016/j.micromeso.2007.06.052

    Article  CAS  Google Scholar 

  16. J. Dong, W. Fang, H. Yuan, W. Xia, X. Zeng, W. Shangguan, Few-Layered MoS2/ZnCdS/ZnS Heterostructures with an Enhanced Photocatalytic Hydrogen Evolution. ACS Appl. Energy Mater. 5(4), 4893–4902 (2022). https://doi.org/10.1021/acsaem.2c00301

    Article  CAS  Google Scholar 

  17. R. Sahraei, S. Darafarin, Preparation of nanocrystalline Ni doped ZnS thin films by ammonia-free chemical bath deposition method and optical properties. J. Lumin. 149, 170–175 (2014). https://doi.org/10.1016/j.jlumin.2014.01.040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. E. Velásquez-Torres thanks CONACYT for the scholarship grant (CVU: 740103). The authors are grateful for the following funding projects: SECTEI/288/2019 8994c19, CONACyT A1-S-41124, SIP-IPN 20221110, SIP-IPN 20220568, UAM 12413443, CONACyT 316022, and A1-S-41124 (-f-3499).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Velásquez-Torres.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Research involving human participants and/or animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velásquez-Torres, M.E., Tzompantzi, F., Castillo-Rodríguez, J.C. et al. ZnS-doped TiO2 photocatalysts for 4-chlorophenol photodegradation in water. MRS Advances 7, 1189–1192 (2022). https://doi.org/10.1557/s43580-022-00439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00439-4

Navigation