Skip to main content
Log in

Effect of heat input on microstructure and mechanical properties in underwater wet flux-cored arc welding of structural steels

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In recent years, the researches have been leaning towards the use of the wet welding process using the self-shielded flux-cored arc welding (FCAW-S) due to its higher productivity. Processing parameters such as welding current (I), arc voltage (E) and welding speed (v) notably determine the final microstructure and resulting mechanical properties of underwater wet welds. In this research work, the effect of the heat input generated by experimental underwater wet welding using the FCAW-S process on the microstructure and microhardness of weld beads made on ASTM A36 steel plates is investigated. For this purpose, experimental underwater welding tests were carried out in a special tank containing 30 cm of water column using three levels of heat input (578, 694 and 1074 J/mm) and a commercial filler metal (AWS E71T-GS). The microstructure and mechanical properties of the weld beads obtained were characterized by scanning electron microscopy (SEM) and Vickers hardness tests, respectively. In general, the experimental results show that the microstructure in both heat-affected zone (HAZ) and fusion zone (FZ) is basically constituted by martensite (M) for the three energy levels studied, which is related to the high cooling rates involved in the underwater welding processes. In addition, the mechanical properties reveal that the hardness values decrease with the increase in heat input due that increasing the ratio decreases the cooling rate and the martensite resulting is less hard. Finally, it is concluded that it is necessary to change the filler metal or looking for better parameters configuration to obtain higher heat input and change de microstructure in the fusion zone (FZ) to improve the mechanical properties in the welded component.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.H. Nixon, C.J. Allum, J.M. Lowes, Underwater welding: a review. Adv. Mater. Sci 3, 147–172 (1982). https://doi.org/10.2478/v10077-008-0040-3

    Article  Google Scholar 

  2. N. Guo, Y. Du, J. Feng, W. Guo, Z. Deng, Study of underwater wet welding stability using an X-ray transmission method. J. Mater. Process. Technol. 225, 133–138 (2015). https://doi.org/10.1016/j.jmatprotec.2015.06.003

    Article  CAS  Google Scholar 

  3. L.E. Ramírez Luna, A.Q. Bracarense, E.C.P. Pessoa, P.S. Costa, G. Altamirano Guerrero, A.E. Salas Reyes, Effect of the welding angle on the porosity of underwater wet welds performed in overhead position at different simulated depths. J. Mater. Process. Technol. 294, 117114 (2021). https://doi.org/10.1016/j.jmatprotec.2021.117114

    Article  CAS  Google Scholar 

  4. ASM International, Handbook Committee. Welding, Brazing, and Soldering, vol. 6 (ASM International, Estados Unidos, 1993)

    Google Scholar 

  5. E. Surojo, E.D. Putri, E.P. Budiana, Recent developments on underwater welding of metallic material. Procedia Struct. Integr. 27, 14–21 (2020). https://doi.org/10.1016/j.prostr.2020.07.003

    Article  Google Scholar 

  6. G.R.P. de Souza, J.R. de Barros, K.L. Cruz, M.M. de Carvalho, R.O. de Martins, R.F. de Souza et al., Análise do potencial uso do processo de soldagem FCAW-S na execução de fundações profundas. Unisanta Sci. Technol. 6, 17–26 (2017)

    Google Scholar 

  7. E.C.P. Pessoa, S. Liu, The state of the art of underwater wet welding practice: part 1. Weld. J. 100, 132–141 (2021). https://doi.org/10.29391/2021.100.011

    Article  Google Scholar 

  8. E.D.W.S. Putri, E. Surojo, E.P. Budiana, Current research and recommended development on fatigue behavior of underwater welded steel. Procedia Struct. Integr. 27, 54–61 (2020). https://doi.org/10.1016/j.prostr.2020.07.008

    Article  Google Scholar 

  9. J. Łabanowski, D. Fydrych, G. Rogalski, Underwater welding: a review. Adv. Mater. Sci. 8, 11–22 (2008). https://doi.org/10.2478/v10077-008-0040-3

    Article  Google Scholar 

  10. N. Guo, Q. Cheng, Y. Fu, Y. Du, X. Zhang, J. Feng, Investigation on the mass transfer control, process stability and welding quality during underwater pulse current FCAW for Q235. J. Manuf. Process. 46, 317–327 (2019). https://doi.org/10.1016/j.jmapro.2019.08.022

    Article  Google Scholar 

  11. Y. Shi, Z. Zheng, J. Huang, Sensitivity model for prediction of bead geometry in underwater wet flux cored arc welding. Trans. Nonferrous Met. Soc. China 23, 1977–1984 (2013). https://doi.org/10.1016/S1003-6326(13)62686-2

    Article  Google Scholar 

  12. A.G. Oikonomou, G.A. Aggidis, Determination of optimum welding parameters for the welding execution of steels used in underwater marine systems (including the submerged parts of Wave Energy Converters). Mater. Today Proc. 18, 455–461 (2019). https://doi.org/10.1016/j.matpr.2019.06.211

    Article  CAS  Google Scholar 

  13. Q. Yang, Y. Han, C. Jia, J. Wu, S. Dong, C. Wu, Impeding effect of bubbles on metal transfer in underwater wet FCAW. J. Manuf. Process. 45, 682–689 (2019). https://doi.org/10.1016/j.jmapro.2019.08.013

    Article  Google Scholar 

  14. Y. Fu, N. Guoa, Y. Du, H. Chen, C. Xu, J. Fenga, Effect of metal transfer mode on spatter and arc stability in underwater flux-cored wire wet welding. J. Manuf. Process. 35, 161–168 (2018). https://doi.org/10.1016/j.jmapro.2018.07.027

    Article  Google Scholar 

  15. C. Xu, N. Guo, X. Zhang, H. Chen, Y. Fu, L. Zhou, Internal characteristic of droplet and its influence on the underwater wet welding process stability. J. Mater. Process. Technol. 280, 1–10 (2020). https://doi.org/10.1016/j.jmatprotec.2020.116593

    Article  Google Scholar 

  16. E.C.P. Pessoa, S. Liu, The state of the art of underwater wet welding practice: part 2. Weld. J. 100, 171–182 (2021). https://doi.org/10.29391/2021.100.014

    Article  Google Scholar 

  17. Y. Suga, The effect of cooling rate on mechanical properties of underwater wet welds. Trans. Jpn. Weld. Soc. 21, 72–77 (1990). https://doi.org/10.2207/qjjws.5.358

    Article  Google Scholar 

  18. Y. Hu, Y. Shi, K. Sun, X. Shen, Microstructure evolution and mechanical performance of underwater local dry welded DSS metals at various simulated water depths. J. Mater. Process. Technol. 264, 366–376 (2019). https://doi.org/10.1016/j.jmatprotec.2018.09.023

    Article  CAS  Google Scholar 

  19. H. Chen, N. Guo, X. Zhang, Q. Cheng, L. Zhou, G. Wang, Effect of water flow on the microstructure, mechanical performance, and cracking susceptibility of underwater wet welded Q235 and E40 steel. J. Mater. Process. Technol. 277, 1–13 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116435

    Article  CAS  Google Scholar 

  20. J. Tomków, M. Landowski, D. Fydrych, G. Rogalski, Underwater wet welding of S1300 ultra-high strength steel. Mar. Struct. 81, 103120 (2022). https://doi.org/10.1016/j.marstruc.2021.103120

    Article  Google Scholar 

  21. C. Xu, N. Guo, X. Zhang, H. Jiang, H. Chen, J. Feng, In situ X-ray imaging of melt pool dynamics in underwater arc welding. Mater. Des. 179, 107899 (2019). https://doi.org/10.1016/j.matdes.2019.107899

    Article  CAS  Google Scholar 

  22. H. Chen, N. Guo, Z. Zhang, C. Liu, L. Zhou, G. Wang, A novel strategy for metal transfer controlling in underwater wet welding using ultrasonic-assisted method. Mater. Lett. 270, 127692 (2020). https://doi.org/10.1016/j.matlet.2020.127692

    Article  CAS  Google Scholar 

  23. A.L.V. da Costa e Silva, P.R. Mei, Aços e ligas especiais, 3rd edn. (Blucher, São Paulo, 2010)

    Google Scholar 

  24. E. Surojo, E.D.W. Syah Putri, E.P. Budiana, Recent developments on underwater welding of metallic material. Procedia Struct. Integr. 27, 14–21 (2020)

    Article  Google Scholar 

  25. Y. Zhang, C. Jia, B. Zhao, J. Hu, C. Wu, Heat input and metal transfer influences on the weld geometry and microstructure during underwater wet FCAW. J. Mater. Process. Technol. 238, 373–382 (2016). https://doi.org/10.1016/j.jmatprotec.2016.07.024

    Article  CAS  Google Scholar 

  26. C. Xu, N. Guo, X. Zhang, H. Jiang, Y. Tan, L. Zhou, Influence of welding speed on weld pool dynamics and welding quality in underwater wet FCAW. J. Manuf. Process. 55, 381–388 (2020). https://doi.org/10.1016/j.jmapro.2020.03.046

    Article  Google Scholar 

  27. F. Pérez-Guerrero, S. Liu, Explaining porosity formation in underwater wet welds. Proc. Int. Conf. Offshore Mech. Arct. Eng. 4, 249–257 (2007). https://doi.org/10.1115/OMAE2007-29696

    Article  Google Scholar 

  28. Y. Shi, Y. Hu, Y. Yi, S. Lin, Z. Li, Porosity and microstructure of underwater wet FCAW of duplex stainless steel. Metallogr. Microstruct. Anal. 6, 383–389 (2017). https://doi.org/10.1007/s13632-017-0376-3

    Article  Google Scholar 

  29. E. Surojo, A.H. Gumilang, T. Triyono, A.R. Prabowo, E.P. Budiana, N. Muhayat, Effect of water flow on underwater wet welded a36 steel. Metals (Basel) 11, 682 (2021). https://doi.org/10.3390/met11050682

    Article  CAS  Google Scholar 

  30. C. Xu, N. Guo, X. Zhang, H. Jiang, H. Chen, J. Feng, In situ X-ray imaging of melt pool dynamics in underwater arc welding. Mater. Des. 179, 1–12 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the financial support for this research from the Tecnológico Nacional de México and Consultores Asociados en Soldadura funds and the knowledge acquired. The author P Costa thanks CONACYT for their support in the form of postdoctoral fellowship

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Costa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Luna, I.F., Costa, P., Altamirano-Guerrero, G. et al. Effect of heat input on microstructure and mechanical properties in underwater wet flux-cored arc welding of structural steels. MRS Advances 7, 1049–1053 (2022). https://doi.org/10.1557/s43580-022-00410-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00410-3

Navigation