Skip to main content
Log in

Lattice dynamical investigation of the Raman and infrared wave numbers of Ruddlesden–Popper compound Sr3Ti2O7

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The Raman and infrared vibrational modes have been investigated by using normal coordinate analysis for the tetragonal Sr3Ti2O7 compound having phase I4/mmm and symmetry D4h17. This is the second member of the Ruddlesden–Popper series Srn+1TinO3n+1 with n = 2. With ten short-range stretching and bending force constants, the calculation of the zone-centre vibrational modes has been done. All of the vibrational modes of the Sr3Ti2O7 compound have not been observed experimentally, and the existing vibrational modes have only been partially assigned. The Wilson’s GF-Matrix Method has been used for the first time to obtain the appropriate theoretical assignments for the Raman and infrared vibrational modes for the Sr3Ti2O7 compound. The calculated vibrational modes are consistent with the available observed experimental data. For each normal mode of the Ruddlesden–Popper phase Sr3Ti2O7, the analysis of potential energy distribution has been done for the significant impact of stretching and bending force constants towards different vibrational modes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. S.N. Ruddlesden, P. Popper, Acta Crystallogr. 10, 538 (1957)

    Article  CAS  Google Scholar 

  2. S.N. Ruddlesden, P. Popper, Acta Crystallogr. 11, 54 (1958)

    Article  CAS  Google Scholar 

  3. P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, D.S. Cannell, J. Eur. Ceram. Soc. 21, 1723 (2001)

    Article  CAS  Google Scholar 

  4. B. Liu, L. Li, X.-Q. Liu, X. Chen, J. Am. Ceram. Soc. 100, 920–928 (2016)

    Article  Google Scholar 

  5. Y.S. Oh, X. Luo, F.-T. Huang, Y. Wang, S.-W. Cheong, Nat. Mater. 14, 407 (2015)

    Article  CAS  Google Scholar 

  6. R.R. Sun, X.Y. Qin, L.L. Li, D. Li, J. Zhang, Y.S. Zhang, C.J. Tang, J. Phys. Chem. Solids 75, 629 (2014)

    Article  CAS  Google Scholar 

  7. K.H. Lee, A. Ishizaki, S.W. Kim, H. Ohta, K. Koumoto, J. Appl. Phys. 102, 033702 (2007)

    Article  Google Scholar 

  8. Z. Lu, D. Sinclair, I. Reaney, J. Am. Ceram. Soc. 99, 515–522 (2015)

    Article  Google Scholar 

  9. Y. Lu, F. Liu, X. Li, F. Gao, Z. Chen, J. Mater. Sci. Technol. 34, 891 (2018)

    Article  CAS  Google Scholar 

  10. I. Zvereva, I. German, Yr. Smirnov, J. Choisnet, J. Mater. Sci. Lett. 20, 127 (2001)

    Article  CAS  Google Scholar 

  11. T. Radhika, R.J. Ramalingam, P.T. Hasna, A.M. Tawfeek, S.R.M. Syed, H. Al-Lohedan, D.M. Al-Dhayan, J. Ovonic Res. 15(5), 315–323 (2019)

    CAS  Google Scholar 

  12. A.H. Reshak, S. Auluck, I. Kityk, Jpn. J. Appl. Phys. 47, 5516 (2008)

    Article  CAS  Google Scholar 

  13. Y. Inaguma, D. Nagasawa, T. Katsumata, Jpn. J. Appl. Phys. 44, 761 (2005)

    Article  CAS  Google Scholar 

  14. K.T. Jacob, G. Rajitha, J. Chem. Thermodyn. 43, 51 (2011)

    Article  CAS  Google Scholar 

  15. D. Music, J. Schneider, J. Phys. Condens. Matter 20, 055224 (2008)

    Article  Google Scholar 

  16. L. Zhang, B. Sun, Q. Liu, N. Ding, H. Yang, L. Wang, Q. Zhang, J. Alloys Compd. 657, 27 (2016)

    Article  CAS  Google Scholar 

  17. W.B. White, V.G. Keramidas, Natl. Bur. Stand. Spec. Publ. 364, 113 (1972)

    Google Scholar 

  18. G. Burns, F.H. Dacol, M.W. Shafer, Solid State Commun. 62, 687 (1987)

    Article  CAS  Google Scholar 

  19. S. Kamba, P. Samoukhina, F. Kadlec, J. Pokorný, J. Petzelt, I.M. Reaney, P.L. Wise, J. Eur. Ceram. Soc. 23, 2639 (2003)

    Article  CAS  Google Scholar 

  20. W. Ge, C. Zhu, H. An, Z. Li, G. Tang, D. Hou, Ceram. Int. 40, 1569 (2014)

    Article  CAS  Google Scholar 

  21. A. Dias, J.I. Viegas, R.L. Moreira, J. Alloys Compd. 725, 77 (2017)

    Article  CAS  Google Scholar 

  22. V. Damljanovic, Raman scattering, magnetization and magnetotransport study of SrFeO3−, Sr3Fe2O7− and CaFeO3 (University of Stuttgart, Stuttgart, 2008)

    Google Scholar 

  23. T. Shimanouchi, M. Tsuboi, T. Miyazawa, J. Chem. Phys. 35, 1597 (1961)

    Article  CAS  Google Scholar 

  24. R. Jindal, M.M. Sinha, H.C. Gupta, Spectrochim. Acta. A. Mol. Biomol Spectrosc. 113, 286 (2013)

    Article  CAS  Google Scholar 

  25. N. Saini, R. Jindal, A. Tripathi, Mater. Today Proc. 50, 243 (2021)

    Article  Google Scholar 

  26. N. Saini, R. Jindal, A. Tripathi, Spectrosc. Lett. 50, 243–247 (2022)

    CAS  Google Scholar 

  27. I. Guedes, J. Mitchell, D. Argyriou, M. Grimsditch, J. Magn. Magn. Mater. 226, 1998 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruby Jindal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, N., Jindal, R., Tripathi, A. et al. Lattice dynamical investigation of the Raman and infrared wave numbers of Ruddlesden–Popper compound Sr3Ti2O7. MRS Advances 7, 579–583 (2022). https://doi.org/10.1557/s43580-022-00325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00325-z

Navigation