Skip to main content

Advertisement

Log in

Bandgap energies of cubic AlxIn1−xNySb1−y calculated by means of the dielectric method

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Bandgap energies of the group III–V quaternary alloy semiconductor, cubic AlxIn1−xNySb1−y, were calculated by means of the dielectric method. The calculation results show that the bandgap energy range covered in the direct transition regime of this alloy system was extended to a significantly lower energy value as compared to the AlxGa1−xNyAs1−y case in our previous work, while no noticeable difference was found in the upper limit energy values between the two quaternary alloy systems. The extension to the lower energy side was attributed to the large bowing in the bandgap energy due to the larger difference in atomic radius between N and Sb than that between N and As. Lattice matching of AlxIn1−xNySb1−y to Si and GaAs yielded only negative bandgap energies. On the other hand, the alloy lattice-matched to GaN possessed a direct transition band structure with bandgap energies ranging between ~ 2.02 and ~ 3.81 eV.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the reported study are available from the corresponding author on a reasonable request.

References

  1. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V, and II–VI Semiconductors (Wiley, West Sussex, 2009)

    Book  Google Scholar 

  2. H. Naoi, T. Matsumoto, MRS Adv. 1, 175 (2016)

    Article  CAS  Google Scholar 

  3. J.A. Van Vechten, Phys. Rev. 182, 891 (1969)

    Article  Google Scholar 

  4. J.A. Van Vechten, Phys. Rev. 187, 1007 (1969)

    Article  Google Scholar 

  5. J.A. Van Vechten, T.K. Bergstresser, Phys. Rev. B 1, 3351 (1970)

    Article  Google Scholar 

  6. Y. Ueta, Doctoral Dissertation (The University of Tokushima, March 1995)

  7. M. Weyers, M. Sato, Appl. Phys. Lett. 62, 1396 (1993)

    Article  CAS  Google Scholar 

  8. H. Naoi, Y. Naoi, S. Sakai, Solid State Electron. 41, 319 (1997)

    Article  CAS  Google Scholar 

  9. T. Ashley, T.M. Burke, G.J. Pryce, A.R. Adams, A. Andreev, B.N. Murdin, E.P. O’Reilly, C.R. Pidgeon, Solid State Electron. 47, 387 (2003)

    Article  CAS  Google Scholar 

  10. S. Sakai, Y. Ueta, Y. Terauchi, Jpn. J. Appl. Phys. 32, 4413 (1993)

    Article  CAS  Google Scholar 

  11. S. Adachi, J. Appl. Phys. 61, 4869 (1987)

    Article  CAS  Google Scholar 

  12. I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94, 3675 (2003)

    Article  CAS  Google Scholar 

  13. Y.P. Varshni, Physica (Amsterdam) 34, 149 (1967)

    Article  CAS  Google Scholar 

  14. J. Schörmann, D.J. As, K. Lischka, P. Schley, R. Goldhahn, S.F. Li, W. Löffler, M. Hetterich, H. Kalt, Appl. Phys. Lett. 89, 261903 (2006)

    Article  Google Scholar 

  15. A. Gueddim, R. Zerdoum, N. Bouarissa, J. Phys. Chem. Solids 67, 1618 (2006)

    Article  CAS  Google Scholar 

  16. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank M. Onozuka and M. Ikemoto for their past contributions leading to this work. The authors would also like to thank D. Marsh for checking the English in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Naoi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naoi, H., Iwai, S. & Ohara, R. Bandgap energies of cubic AlxIn1−xNySb1−y calculated by means of the dielectric method. MRS Advances 7, 528–532 (2022). https://doi.org/10.1557/s43580-022-00295-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00295-2

Navigation