Skip to main content
Log in

Encapsulation of iodine-loaded metallated silica materials by a geopolymer matrix

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The development of a wasteform for the disposal of I-129 would enable a change in waste management of iodine from recycling of nuclear fuel. Initial results investigating the encapsulation of iodide-loaded metallated silica sorbents into a geopolymer matrix are presented. Two silica materials, with a mercapto and a thiourea functionality, were found in scoping trials to have modest iodide loading capacities [72.9 ± 5 mg(I)/g, 119.5 ± 5 g(I)/g]]. Loaded sorbents were encapsulated in a geopolymer (GP) matrix at a conservative 2 wt% loading of capture material to test whether a wasteform could be created. A Blast Furnace Slag:Portland Cement (BFS:PC) cement was created as a benchmark reference. Successful formation of both BFS:PC and GP wasteforms was achieved, but the silica matrix in the GP samples was found to break down due to the high pH (~ 14) of the fresh geopolymer paste. Bleed water from one of the GP samples was analysed showing formation of Ag2S.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright © by WM Symposia. All Rights Reserved. Reprinted with permission

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.I. Hudson, C.P. Buckley, Aerial and liquid effluent treatment in BNFL’S thermal oxide reprocessing plant (THORP), p. 22, 1996

  2. B.J. Riley, J.D. Vienna, D.M. Strachan, J.S. McCloy, J.L. Jerden, Materials and processes for the effective capture and immobilization of radioiodine: a review. J. Nucl. Mater. 470, 307–326 (2016). https://doi.org/10.1016/j.jnucmat.2015.11.038

    Article  CAS  Google Scholar 

  3. R.C. Moore et al., Iodine immobilization by materials through sorption and redox-driven processes: a literature review. Sci. Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2019.06.166

    Article  Google Scholar 

  4. L.L. Burger, R.D. Scheele, K.D. Wiemers, Selection of a form for fixation of iodine-129, United States, 1981. https://doi.org/10.2172/5664862

  5. T.M. Nenoff, P. Vane. Brady, C.D. Mowry, T.J. Garino, AgI-MOR loading effect on the durability of the sandia low temperature sintering GCM waste form, United States, 2014. https://doi.org/10.2172/1171567

  6. R. Pénélope, L. Campayo, M. Fournier, A. Gossard, A. Grandjean, Silver-phosphate glass matrix for iodine conditioning: from sorbent design to vitrification. J. Nucl. Mater. (2021). https://doi.org/10.1016/j.jnucmat.2021.153352

    Article  Google Scholar 

  7. S. Chong et al., Glass-bonded iodosodalite waste form for immobilization of 129I. J. Nucl. Mater. 504, 109–121 (2018). https://doi.org/10.1016/j.jnucmat.2018.03.033

    Article  CAS  Google Scholar 

  8. W. Hebel, G. Cottone, Management Modes for Iodine—129 (Harwood Academic Pub, Abingdon, 1982)

    Google Scholar 

  9. T. IAEA, Conditioning, and disposal of iodine-129. TRS-276. Int. At. Energy Agency Vienna Austria, 1987

  10. L.E. Trevorrow, G.F. Vandegrift, V.M. Kolba, M.J. Steindler, Compatibility of technologies with regulations in the waste management of H-3, I-129, C-14, and Kr-85 Part I Initial information base, United States, 1983. http://inis.iaea.org/search/search.aspx?orig_q=RN:15010590

  11. P. Taylor, A review of methods for immobilizing iodine-129 arising from a nuclear fuel recycle plant, with emphasis on waste-form chemistry, Canada, 1990. http://inis.iaea.org/search/search.aspx?orig_q=RN:23002552

  12. M.I. Ojovan, W.E. Lee, S.N. Kalmykov, An Introduction to Nuclear Waste Immobilisation (Elsevier, Amsterdam, 2019)

    Google Scholar 

  13. T.J. Robshaw et al., Insights into the interaction of iodide and iodine with Cu(II)-loaded bispicolylamine chelating resin and applications for nuclear waste treatment. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124647

    Article  Google Scholar 

  14. B. Walkley, X. Ke, O.H. Hussein, S.A. Bernal, J.L. Provis, Incorporation of strontium and calcium in geopolymer gels. J. Hazard. Mater. 382, 121015 (2020). https://doi.org/10.1016/j.jhazmat.2019.121015

    Article  CAS  Google Scholar 

  15. T. Robshaw, S. Tukra, D.B. Hammond, G.J. Leggett, M.D. Ogden, Highly efficient fluoride extraction from simulant leachate of spent potlining via La-loaded chelating resin. An equilibrium study. J. Hazard. Mater. 361, 200–209 (2019). https://doi.org/10.1016/j.jhazmat.2018.07.036

    Article  CAS  Google Scholar 

  16. S.E. Pepper, K.R. Whittle, L.M. Harwood, J. Cowell, T.S. Lee, M.D. Ogden, Cobalt and nickel uptake by silica-based extractants. Sep. Sci. Technol. 53(10), 1552–1562 (2018). https://doi.org/10.1080/01496395.2017.1405034

    Article  CAS  Google Scholar 

  17. T. Karanfil, E.C. Moro, S.M. Serkiz, Development and testing of a silver chloride-impregnated activated carbon for aqueous removal and sequestration of iodide. Environ. Technol. 26(11), 1255–1262 (2005). https://doi.org/10.1080/09593332608618595

    Article  CAS  Google Scholar 

  18. X. Zhang, P. Gu, X. Li, G. Zhang, Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon. Chem. Eng. J. 322, 129–139 (2017). https://doi.org/10.1016/j.cej.2017.03.102

    Article  CAS  Google Scholar 

  19. C. Decamp, S. Happel, Utilization of a mixed-bed column for the removal of iodine from radioactive process waste solutions. J. Radioanal. Nucl. Chem. 298(2), 763–767 (2013). https://doi.org/10.1007/s10967-013-2503-1

    Article  CAS  Google Scholar 

  20. P.U. Singare, Ion-Isotopic exchange reaction kinetics in characterization of anion exchange resins Dowex 550A LC and Indion-820, 2013

  21. J. Warchoł, P. Misaelides, R. Petrus, D. Zamboulis, Preparation and application of organo-modified zeolitic material in the removal of chromates and iodides. J. Hazard. Mater. 137(3), 1410–1416 (2006). https://doi.org/10.1016/j.jhazmat.2006.04.028

    Article  CAS  Google Scholar 

  22. Z. Tauanov, V.J. Inglezakis, Removal of iodide from water using silver nanoparticles-impregnated synthetic zeolites. Sci. Total Environ. 682, 259–270 (2019). https://doi.org/10.1016/j.scitotenv.2019.05.106

    Article  CAS  Google Scholar 

  23. R.M. Asmussen, J.J. Neeway, A.R. Lawter, A. Wilson, N.P. Qafoku, Silver-based getters for 129I removal from low-activity waste. Radiochim. Acta 104(12), 905–913 (2016). https://doi.org/10.1515/ract-2016-2598

    Article  CAS  Google Scholar 

  24. A. Bo, S. Sarina, Z. Zheng, D. Yang, H. Liu, H. Zhu, Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent. J. Hazard. Mater. 246–247, 199–205 (2013). https://doi.org/10.1016/j.jhazmat.2012.12.008

    Article  CAS  Google Scholar 

  25. S. Liu, N. Wang, Y. Zhang, Y. Li, Z. Han, P. Na, Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O–Ag/TiO2 composites under visible light irradiation. J. Hazard. Mater. 284, 171–181 (2015). https://doi.org/10.1016/j.jhazmat.2014.10.054

    Article  CAS  Google Scholar 

  26. R.M. Asmussen, J. Matyáš, N.P. Qafoku, A.A. Kruger, Silver-functionalized silica aerogels and their application in the removal of iodine from aqueous environments. J. Hazard. Mater. (2019). https://doi.org/10.1016/j.jhazmat.2018.04.081

    Article  Google Scholar 

  27. P. Mao, Y. Liu, Y. Jiao, S. Chen, Y. Yang, Enhanced uptake of iodide on Ag@Cu2O nanoparticles. Chemosphere 164, 396–403 (2016). https://doi.org/10.1016/j.chemosphere.2016.08.116

    Article  CAS  Google Scholar 

  28. P. Mao et al., Synthesis of Cu/Cu2O hydrides for enhanced removal of iodide from water. J. Hazard. Mater. 328, 21–28 (2017). https://doi.org/10.1016/j.jhazmat.2016.12.065

    Article  CAS  Google Scholar 

  29. Y.-Y. Chen, S.-H. Yu, Q.-Z. Yao, S.-Q. Fu, G.-T. Zhou, One-step synthesis of Ag2O@Mg(OH)2 nanocomposite as an efficient scavenger for iodine and uranium. J. Colloid Interface Sci. 510, 280–291 (2018). https://doi.org/10.1016/j.jcis.2017.09.073

    Article  CAS  Google Scholar 

  30. E.R. Maddrell, Silver iodide sodalite-wasteform/hip canister interactions and aqueous durability. J. Nucl. Mater. 517, 71–79 (2019)

    Article  CAS  Google Scholar 

  31. M. Atkins, A. Kindness, F.P. Glasser, I. Gibson, The use of silver as a selective precipitant for 129I in radioactive waste management. Waste Manag. 10(4), 303–308 (1990). https://doi.org/10.1016/0956-053X(90)90104-S

    Article  CAS  Google Scholar 

  32. D.I. Kaplan et al., Iodine speciation in a silver-amended cementitious system. Environ. Int. 126, 576–584 (2019). https://doi.org/10.1016/j.envint.2019.02.070

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded under the £46m Advanced Fuel Cycle Programme as part of the Department for Business, Energy and Industrial Strategy’s (BEIS) £505m Energy Innovation Programme. On behalf of all authors, the corresponding author states that there is no conflict of interest. All data generated or analysed during this study are included in this published article and its supplementary information file.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Turner.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2062 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kearney, S., Robshaw, T.J., Turner, J. et al. Encapsulation of iodine-loaded metallated silica materials by a geopolymer matrix. MRS Advances 7, 105–109 (2022). https://doi.org/10.1557/s43580-022-00207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00207-4

Navigation