Skip to main content
Log in

Self-irradiation-induced disorder in (U238Pu)O2

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

238Pu-doped UO2 was characterised periodically to investigate the long-term effects of α-self-irradiation on spent nuclear fuel. Samples of two compositions (1.25 and 5% wt 238Pu), were studied by means of X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The cumulated dose received by the samples was measured in displacements per atom (dpa) to allow comparison between the two samples and to the literature values. XRD characterization showed that the lattice swelling approached saturation at 0.3% of the lattice parameter of the cubic cell at 0.4 dpa damage accumulation. Microstrain decreased for the whole duration of the study, as a result of point defect recombination into dislocation loops, that were observed by TEM for dpa as low as 0.072. Raman highlighted the broadening of the T2g band, and the increase and broadening of the defect triplet band. Both batches of samples followed the same trend if plotted against dpa, proving that for these dopant concentrations the self-irradiation effects do not depend on the rate of radiation damage creation in the matrix.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Status and Trends in Spent Fuel and Radioactive Waste Management. (INTERNATIONAL ATOMIC ENERGY AGENCY, 2018).

  2. T. Ahn, V. Rondinella, T. Wiss, Potential stress on cladding imposed by the matrix swelling from alpha decay in high burnup spent nuclear fuel. 14th Int. High-Level Radioact. Waste Manag. Conf. IHLRWMC 2013 Integr. Storage, Transp. Dispos. 1, 111–117 (2013).

  3. D. Staicu et al., Impact of auto-irradiation on the thermophysical properties of oxide nuclear reactor fuels. J. Nucl. Mater. 397, 8–18 (2010)

    Article  CAS  Google Scholar 

  4. P.G. Lucuta, R.A. Verrall, I.J. Hastings, H. Matzke, Thermal conductivity and gas release from SIMFUEL. (1993).

  5. P.G. Lucuta, R.A. Verrall, H. Matzke, B.J. Palmer, Microstructural features of SIMFUEL—simulated high-burnup UO2-based nuclear fuel. J. Nucl. Mater. 178, 48–60 (1991)

    Article  CAS  Google Scholar 

  6. T. Wangle, V. Tyrpekl, M. Cologna, J. Somers, Simulated UO2 fuel containing CsI by spark plasma sintering. J. Nucl. Mater. 466, 150–153 (2015)

    Article  CAS  Google Scholar 

  7. F. Garrido, L. Vincent, L. Nowicki, G. Sattonnay, L. Thomé, Radiation stability of fluorite-type nuclear oxides. Nucl. Instrum. Methods Phys. Res. Sect. B 266, 2842–2847 (2008)

    Article  CAS  Google Scholar 

  8. B. Marchand et al., Xenon migration in UO2 under irradiation studied by SIMS profilometry. J. Nucl. Mater. 440, 562–567 (2013)

    Article  CAS  Google Scholar 

  9. G. Gutierrez, C. Onofri, S. Miro, M. Bricout, F. Leprêtre, Effect of ballistic damage in UO2 samples under ion beam irradiations studied by in situ Raman spectroscopy. Nucl. Instruments Methods Phys. Res. Sect. B 434, 45–50 (2018)

    Article  CAS  Google Scholar 

  10. D. Prieur et al., Self-irradiation effects in dense and tailored porosity U1−yAmyO2−x (y=0.10; 0.15) compounds. J. Nucl. Mater. 411, 15–19 (2011)

    Article  CAS  Google Scholar 

  11. T. Wiss et al., Evolution of spent nuclear fuel in dry storage conditions for millennia and beyond. J. Nucl. Mater. 451, 198–206 (2014)

    Article  CAS  Google Scholar 

  12. Z. Talip et al., Thermal diffusion of helium in 238Pu-doped UO2. J. Nucl. Mater. 445, 117–127 (2014)

    Article  CAS  Google Scholar 

  13. G. Gutierrez, D. Gosset, M. Bricout, C. Onofri, A. Debelle, Effect of coupled electronic and nuclear energy deposition on strain and stress levels in UO2. J. Nucl. Mater. 519, 52–56 (2019)

    Article  CAS  Google Scholar 

  14. M. Bricout et al., Radiation damage in uranium dioxide: Coupled effect between electronic and nuclear energy losses. J. Nucl. Mater. 531, 151967 (2020)

    Article  CAS  Google Scholar 

  15. E. De Bona et al., Radiation effects in alpha-doped UO. Nucl. Instrum. Methods Phys. Res. Sect. B 468, 54–59 (2020)

    Article  Google Scholar 

  16. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818–1823 (2010)

    Article  CAS  Google Scholar 

  17. J. Soullard, E.A. Alamo, Etude du ralentissement des ions dans une cible diatomique. Radiat. Eff. 38, 133–139 (1978)

    Article  CAS  Google Scholar 

  18. V. Petříček, M. Dušek, L. Palatinus, Crystallographic computing system JANA2006: general features. Z. Krist. Cryst. Mater. 229, 345 (2014)

    Google Scholar 

  19. G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

    Article  CAS  Google Scholar 

  20. M. Naji et al., An original approach for Raman spectroscopy analysis of radioactive materials and its application to americium-containing samples. J. Raman Spectrosc. 46, 750–756 (2015)

    Article  CAS  Google Scholar 

  21. T. Wiss et al., TEM study of alpha-damaged plutonium and americium dioxides. J. Mater. Res. 30, 1544–1554 (2015)

    Article  CAS  Google Scholar 

  22. T. Wiss et al., Recent results of microstructural characterization of irradiated light water reactor fuels using scanning and transmission electron microscopy. JOM 64, 1390–1395 (2012)

    Article  CAS  Google Scholar 

  23. T.D. Chikalla, R.P. Turcotte, Self-radiation damage ingrowth in 238PuO2. Radiat. Eff. 19, 93–98 (1973)

    Article  CAS  Google Scholar 

  24. M. Kato et al., Self-radiation damage in plutonium and uranium mixed dioxide. J. Nucl. Mater. 393, 134–140 (2009)

    Article  CAS  Google Scholar 

  25. D. Horlait, F. Lebreton, P. Roussel, T. Delahaye, XRD monitoring of α self-irradiation in uranium-americium mixed oxides. Inorg. Chem. 52, 14196–14204 (2013)

    Article  CAS  Google Scholar 

  26. W.J. Weber, et al., Plutonium in Waste Forms. Plutonium Handbook. 2349–2422 (2019).

  27. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London. Ser. A 241, 376–396 (1957)

    Article  Google Scholar 

  28. C. Jégou et al., Raman spectroscopy characterization of actinide oxides (U1−yPuy)O2: resistance to oxidation by the laser beam and examination of defects. J. Nucl. Mater. 405, 235–243 (2010)

    Article  Google Scholar 

  29. Z. Talip et al., Raman microspectroscopic studies of unirradiated homogeneous (U0.76Pu0.24)O2+x: the effects of Pu content, non-stoichiometry, self-radiation damage and secondary phases. J. Raman Spectrosc. 48, 765–772 (2017)

    Article  CAS  Google Scholar 

  30. J.M. Elorrieta et al., Raman study of the oxidation in (U, Pu)O2 as a function of Pu content. J. Nucl. Mater. 495, 484–491 (2017)

    Article  CAS  Google Scholar 

  31. L. Medyk et al., Determination of the plutonium content and O/M ratio of (U, Pu)O2–x using Raman spectroscopy. J. Nucl. Mater. 541, 152439 (2020)

    Article  CAS  Google Scholar 

  32. G. Dolling, R.A. Cowley, A.D.B. Woods, The crystal dynamics of uranium dioxide. Can. J. Phys. 43, 1397–1413 (1965)

    Article  CAS  Google Scholar 

  33. E. Villa-Aleman, A.L. Houk, N.J. Bridges, T.C. Shehee, Raman spectroscopy: a tool to investigate alpha decay damage in a PuO2 crystal lattice and determining sample age since calcination. J. Raman Spectrosc. 50, 899–901 (2019)

    Article  CAS  Google Scholar 

  34. G. Guimbretière et al., In situ Raman monitoring of He2+ irradiation induced damage in a UO2 ceramic. Appl. Phys. Lett. 103, 041904 (2013)

    Article  Google Scholar 

  35. L. Desgranges, P. Simon, P. Martin, G. Guimbretiere, G. Baldinozzi, What can we learn from Raman spectroscopy on irradiation-induced defects in UO2? JOM 66, 2546–2552 (2014)

    Article  CAS  Google Scholar 

  36. Sabathier, C. et al. In situ TEM study of temperature-induced fission product precipitation in UO2. Nucl. Instrum. Methods Phys. Res. Sect. B 266, 3027–3032 (2008)

  37. R.S. Barnes, D.J. Mazey, The nature of radiation-induced point defect clusters. Philos. Mag. 5, 1247–1253 (1960)

    Article  CAS  Google Scholar 

  38. R.A. Enrique, P. Bellon, Compositional patterning in systems driven by competing dynamics of different length scale. Phys. Rev. Lett. 84, 2885–2888 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was performed in the framework of the EURATOM Research and Training Program 2014-2018 and extension 2019-2020, through a European Commission PhD grant. The authors would like to acknowledge D. Bouexiere, J. Boshoven, S. Stohr, and H. Hein for the valuable support both in the preparation and characterization of the samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emanuele De Bona or Thierry Wiss.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Bona, E., Colle, JY., Dieste, O. et al. Self-irradiation-induced disorder in (U238Pu)O2. MRS Advances 6, 213–219 (2021). https://doi.org/10.1557/s43580-021-00040-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00040-1

Navigation