Skip to main content
Log in

Cubic halide perovskites in the Cs(Pb1−xSnx)(Br3−yCly) solid solutions for crack-free Bridgman grown single crystals

  • Early Career Materials Researcher Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Bridgman grown CsPbBr3 single crystals have demonstrated γ-ray spectra with a high resolution, making them a highly promising competitor for the current benchmark room-temperature radiation detector Cd1−xZnxTe. However, CsPbBr3 crystal growth is a very slow process that oftentimes results in cracked ingots due to phase transitions from cubic to orthorhombic crystal systems. In this report, we demonstrate the stabilization of a room-temperature cubic phase in Cs(Pb1−xSnx)(Br3−yCly) solid solutions to overcome this issue. Cs(Pb0.75Sn0.25)(Br1.00Cl2.00) was identified as the most promising composition and grown as a crack-free ingot using Bridgman growth in around one week.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request. Supporting information file contains crystallographic data, DSC data, PXRD plots, UV–Vis spectra. CCDC 2314464-2314466 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing https://www.data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

References

  1. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M.A. Hope, F.T. Eickemeyer, M. Kim, Y.J. Yoon, I.W. Choi, B.P. Darwich, S.J. Choi, Y. Jo, J.H. Lee, B. Walker, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D.S. Kim, M. Grätzel, J.Y. Kim, Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Y. Liu, Y. Zhang, X. Zhu, J. Feng, I. Spanopoulos, W. Ke, Y. He, X. Ren, Z. Yang, F. Xiao, K. Zhao, M. Kanatzidis, S. Liu(Frank), Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater. (2021). https://doi.org/10.1002/adma.202006010

    Article  PubMed  PubMed Central  Google Scholar 

  3. T. Bu, J. Li, H. Li, C. Tian, J. Su, G. Tong, L.K. Ono, C. Wang, Z. Lin, N. Chai, X.-L. Zhang, J. Chang, J. Lu, J. Zhong, W. Huang, Y. Qi, Y.-B. Cheng, F. Huang, Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 1979(372), 1327–1332 (2021). https://doi.org/10.1126/science.abh1035

    Article  ADS  CAS  Google Scholar 

  4. J. Jiang, Z. Chu, Z. Yin, J. Li, Y. Yang, J. Chen, J. Wu, J. You, X. Zhang, Red perovskite light-emitting diodes with efficiency exceeding 25% realized by Co-spacer cations. Adv. Mater. (2022). https://doi.org/10.1002/adma.202204460

    Article  PubMed  PubMed Central  Google Scholar 

  5. A. Jana, S. Cho, S.A. Patil, A. Meena, Y. Jo, V.G. Sree, Y. Park, H. Kim, H. Im, R.A. Taylor, Perovskite: scintillators, direct detectors, and X-ray imagers. Mater. Today 55, 110–136 (2022). https://doi.org/10.1016/j.mattod.2022.04.009

    Article  CAS  Google Scholar 

  6. J. Li, J. Dagar, O. Shargaieva, M.A. Flatken, H. Köbler, M. Fenske, C. Schultz, B. Stegemann, J. Just, D.M. Többens, A. Abate, R. Munir, E. Unger, 20.8% slot-die coated MAPbI3 perovskite solar cells by optimal DMSO-content and age of 2-ME based precursor inks. Adv. Energy Mater. (2021). https://doi.org/10.1002/aenm.202003460

    Article  Google Scholar 

  7. Y. He, M. Petryk, Z. Liu, D.G. Chica, I. Hadar, C. Leak, W. Ke, I. Spanopoulos, W. Lin, D.Y. Chung, B.W. Wessels, Z. He, M.G. Kanatzidis, CsPbBr 3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photonics 15, 36–42 (2021). https://doi.org/10.1038/s41566-020-00727-1

    Article  ADS  CAS  Google Scholar 

  8. Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen, H.-X. Deng, X. Chu, X. Peng, Y. Yuan, X. Zhang, J. You, Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 1979(377), 531–534 (2022). https://doi.org/10.1126/science.abp8873

    Article  ADS  CAS  Google Scholar 

  9. J.S. Kim, J.-M. Heo, G.-S. Park, S.-J. Woo, C. Cho, H.J. Yun, D.-H. Kim, J. Park, S.-C. Lee, S.-H. Park, E. Yoon, N.C. Greenham, T.-W. Lee, Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022). https://doi.org/10.1038/s41586-022-05304-w

    Article  ADS  CAS  PubMed  Google Scholar 

  10. J. Kang, L.-W. Wang, High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017). https://doi.org/10.1021/acs.jpclett.6b02800

    Article  CAS  PubMed  Google Scholar 

  11. M. Sebastian, J.A. Peters, C.C. Stoumpos, J. Im, S.S. Kostina, Z. Liu, M.G. Kanatzidis, A.J. Freeman, B.W. Wessels, Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbC3. Phys. Rev. B 92, 235210 (2015). https://doi.org/10.1103/PhysRevB.92.235210

    Article  ADS  CAS  Google Scholar 

  12. H. Shi, M.-H. Du, Shallow halogen vacancies in halide optoelectronic materials. Phys. Rev. B 90, 174103 (2014). https://doi.org/10.1103/PhysRevB.90.174103

    Article  ADS  CAS  Google Scholar 

  13. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S. Seok, Il: high-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 1979(348), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272

    Article  ADS  CAS  Google Scholar 

  14. C.C. Stoumpos, C.D. Malliakas, J.A. Peters, Z. Liu, M. Sebastian, J. Im, T.C. Chasapis, A.C. Wibowo, D.Y. Chung, A.J. Freeman, B.W. Wessels, M.G. Kanatzidis, Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013). https://doi.org/10.1021/cg400645t

    Article  CAS  Google Scholar 

  15. Y. He, C.C. Stoumpos, I. Hadar, Z. Luo, K.M. McCall, Z. Liu, D.Y. Chung, B.W. Wessels, M.G. Kanatzidis, Demonstration of energy-resolved γ-ray detection at room temperature by the CsPbCl3 perovskite semiconductor. J. Am. Chem. Soc. 143, 2068–2077 (2021). https://doi.org/10.1021/jacs.0c12254

    Article  CAS  PubMed  Google Scholar 

  16. Y. He, Z. Liu, K.M. McCall, W. Lin, D.Y. Chung, B.W. Wessels, M.G. Kanatzidis, Perovskite CsPbBr 3 single crystal detector for alpha-particle spectroscopy. Nucl. Instrum. Methods Phys. Res. A. 922, 217–221 (2019). https://doi.org/10.1016/j.nima.2019.01.008

    Article  ADS  CAS  Google Scholar 

  17. Y. He, L. Matei, H.J. Jung, K.M. McCall, M. Chen, C.C. Stoumpos, Z. Liu, J.A. Peters, D.Y. Chung, B.W. Wessels, M.R. Wasielewski, V.P. Dravid, A. Burger, M.G. Kanatzidis, High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9, 1609 (2018). https://doi.org/10.1038/s41467-018-04073-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. C. Scheiber, CdTe and CdZnTe detectors in nuclear medicine. Nucl. Instrum. Methods Phys. Res. A 448, 513–524 (2000). https://doi.org/10.1016/S0168-9002(00)00282-5

    Article  ADS  CAS  Google Scholar 

  19. H.Q. Le, J.L. Ducote, S. Molloi, Radiation dose reduction using a CdZnTe-based computed tomography system: comparison to flat-panel detectors. Med. Phys. 37, 1225–1236 (2010). https://doi.org/10.1118/1.3312435

    Article  CAS  PubMed Central  Google Scholar 

  20. M. Prokesch, S. Soldner, A. Sundaram, M. Reed, H. Li, J. Eger, J. Reiber, C. Shanor, C. Wray, A. Emerick, A. Peters, C. Jones, CdZnTe detectors operating at X-ray fluxes of 100 million photons/(mm2 sec). IEEE Trans. Nucl. Sci. 63, 1854–1859 (2016). https://doi.org/10.1109/TNS.2016.2556318

    Article  ADS  CAS  Google Scholar 

  21. T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, R.B. James, Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R. Rep. 32, 103–189 (2001). https://doi.org/10.1016/S0927-796X(01)00027-4

    Article  Google Scholar 

  22. S. Hirotsu, J. Harada, M. Iizumi, K. Gesi, Structural phase transitions in CsPbBr3. J. Phys. Soc. Japan 37, 1393–1398 (1974). https://doi.org/10.1143/JPSJ.37.1393

    Article  ADS  CAS  Google Scholar 

  23. L. Zhao, Y. Zhou, Z. Shi, Z. Ni, M. Wang, Y. Liu, J. Huang, High-yield growth of FACsPbBr 3 single crystals with low defect density from mixed solvents for gamma-ray spectroscopy. Nat. Photonics 17, 315–323 (2023). https://doi.org/10.1038/s41566-023-01154-8

    Article  ADS  CAS  Google Scholar 

  24. A. Karmakar, A. Bhattacharya, G.M. Bernard, A. Mar, V.K. Michaelis, Revealing the local Sn and Pb arrangements in CsSnxPb1–xBr3 perovskites with solid-state NMR spectroscopy. ACS Mater. Lett. 3, 261–267 (2021). https://doi.org/10.1021/acsmaterialslett.0c00596

    Article  CAS  Google Scholar 

  25. A. Rajagopal, R.J. Stoddard, H.W. Hillhouse, A.K.-Y. Jen, On understanding bandgap bowing and optoelectronic quality in Pb–Sn alloy hybrid perovskites. J Mater Chem A Mater. 7, 16285–16293 (2019). https://doi.org/10.1039/C9TA05308E

    Article  CAS  Google Scholar 

  26. G. Kieslich, S. Sun, A.K. Cheetham, An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 6, 3430–3433 (2015). https://doi.org/10.1039/C5SC00961H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  28. M.R. Linaburg, E.T. McClure, J.D. Majher, P.M. Woodward, Cs1–xRbxPbCl3 and Cs1–xRbxPbBr3 solid solutions: understanding octahedral tilting in lead halide perovskites. Chem. Mater. 29, 3507–3514 (2017). https://doi.org/10.1021/acs.chemmater.6b05372

    Article  CAS  Google Scholar 

  29. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). https://doi.org/10.1021/ic401215x

    Article  CAS  PubMed  Google Scholar 

  30. U. Makanda, A. Voinot, R. Kandel, Y. Wu, M. Leybourne, P. Wang, Purity analysis for room-temperature semiconductor radiation detection material, CsPbBr3, using ICP-MS. J. Anal. At. Spectrom. 35, 2672–2678 (2020). https://doi.org/10.1039/D0JA00223B

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the University of Georgia Department of Chemistry, Franklin College of Arts and Sciences, and the Office of Provost. AM was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award DE-SC0023377.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Aleksandra Valueva, Sergei Novikov, Joshua Bledsoe, Yile Cai, and Alevtina Maksimova. The first draft of the manuscript was written by Vladislav Klepov and Aleksandra Valueva, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vladislav V. Klepov.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3388 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valueva, A.D., Novikov, S.A., Bledsoe, J. et al. Cubic halide perovskites in the Cs(Pb1−xSnx)(Br3−yCly) solid solutions for crack-free Bridgman grown single crystals. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00535-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00535-6

Keywords

Navigation