Skip to main content
Log in

Formulated poly (butyl vinyl ether) adhesives as alternative materials for direct ink writing (DIW) 3D printing

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

A Correction to this article was published on 16 November 2023

This article has been updated

Abstract

Direct Ink Writing (DIW) is a promising 3D printing method for controlled multi-material deposition to make well-defined geometrical structures. Stringent rheological requirements enable the additive build-up of extruded layers. Although commercially available, no occasion has been reported on poly(butyl vinyl ether) adhesives for DIW. The moisture curing mechanism and thixotropic build-up indicate an alternative route to cross-linking curing to thermoset elastomers. Chemical composition and rheological characterizations were conducted to evaluate printability and physicochemical properties (i.e., dielectric properties, thermal conductivity, etc.) to address the potential for further reformulation and study with nanomaterial additives.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

All data for the work is either included in this manuscript or is part of the Electronic Supplementary Information (SI) file that will be publicly available.

Change history

References

  1. M.A.S.R. Saadi, A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Maruf, A.J. Hart, P.M. Ajayan, M.M. Rahman, Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34, 2108855 (2022). https://doi.org/10.1002/adma.202108855

    Article  CAS  Google Scholar 

  2. D.S. Shah, B.K. Lawson, M. Yaszemski, Description and Definition of Adhesives, and Related Terminology, in Biomaterials Science. (Academic Press, Cambridge, 2020)

    Google Scholar 

  3. “Elastomeric Systems,” Master Bond Elastomeric Adhesives and Sealants | MasterBond.com. https://www.masterbond.com/products/elastomeric-systems. Accessed 07 Mar 2023

  4. S. Rouif, Radiation cross-linked polymers: Recent developments and new applications. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 236(1–4), 68–72 (2005). https://doi.org/10.1016/j.nimb.2005.03.252

    Article  CAS  Google Scholar 

  5. NovaBond textured hybrid construction sealant specification data. https://novagard.com/wp-content/uploads/dlm_uploads/2022/08/TDS-NBT-NovaBond-TEXTURED-Hybrid-Construction-Sealant-v1.8.pdf. Accessed 07 Mar 2023

  6. “Safety data sheet - gorilla construction adhesive.” https://www.gorillatough.com/wp-content/uploads/Gorilla-Construction-Adhesive.pdf. Accessed 07 Mar 2023

  7. POLYVINYL ETHERS (PVE), Properties of polyvinyethers. https://polymerdatabase.com/polymer%20classes/Polyvinylether%20type.html. Accessed 07 Mar 2023

  8. H. Nakata, S. Murata, J. Filatreau, Occurrence and concentrations of benzotriazole UV stabilizers in marine organisms and sediments from the Ariake Sea, Japan. Environ. Sci. Technol. 43(18), 6920–6926 (2009). https://doi.org/10.1021/es900939j

    Article  CAS  Google Scholar 

  9. Libretexts, “Infrared spectroscopy absorption table,” Chemistry LibreTexts, Accessed 03 Nov 2020

  10. E. Herth, R. Zeggari, J.-Y. Rauch, F. Remy-Martin, W. Boireau, Investigation of amorphous SiOx layer on gold surface for Surface Plasmon Resonance measurements. Microelectron. Eng. (2016). https://doi.org/10.1016/j.mee.2016.04.014

    Article  Google Scholar 

  11. Everkem Products. Introduction to MS Polymer Hybrid Sealants and Adhesives.Available: https://everkemproducts.com/introduction-to-ms-polymer-hybrid-sealants-and-adhesives/. Accessed 17 May 2023

  12. Y. Sainohira, K. Fujino, A. Shimojima et al., Preparation of CO2-adsorbable amine-functionalized polysilsesquioxanes containing cross-linked structures without using surfactants and strong acid or base catalysts. J. Sol-Gel Sci. Technol. 91, 505–513 (2019). https://doi.org/10.1007/s10971-019-05072-6

    Article  CAS  Google Scholar 

  13. K. Saido, H. Taguchi, S. Yada et al., Thermal decomposition products of phthalates with poly(vinyl chloride) and their mutagenicity. Macromol. Res. 11, 178–182 (2003). https://doi.org/10.1007/BF03218349

    Article  CAS  Google Scholar 

  14. T.O. Bamkole, E.U. Emovon, The thermal decomposition of n-butyl vinyl ether. Part I. The inhibited reaction. J. Chem. Soc. B (1967). https://doi.org/10.1039/J29670000523

    Article  Google Scholar 

  15. K.S.P. Karunadasa, C.H. Manoratne, H.M.T.G.A. Pitawala, R.M.G. Rajapakse, Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. J. Phys. Chem. Solids 134, 21–28 (2019). https://doi.org/10.1016/j.jpcs.2019.05.023

    Article  CAS  Google Scholar 

  16. D. Kuckling, A. Doering, F. Krahl, K.-F. Arndt, Stimuli-Responsive Polymer Systems, in Polymer Science A Comprehensive Reference. (Elsevier, Amsterdam, 2012)

    Google Scholar 

  17. Z. Xu, S. Zheng, X. Wu, Z. Liu, R. Bao, W. Yang, M. Yang, High actuated performance MWCNT/Ecoflex dielectric elastomer actuators based on layer-by-layer structure. Compos. Part A: Appl. Sci. Manuf. (2019). https://doi.org/10.1016/j.compositesa.2019.105527

    Article  Google Scholar 

  18. “Dissipation factor,” Dissipation Factor (DF) of Plastics - Unit, Formula and Measurement. https://omnexus.specialchem.com/polymer-properties/properties/dissipation-factor. Accessed 07 Mar 2023

  19. X. Yu, B. Yi, F. Liu, X. Wang, Prediction of the dielectric dissipation factor tanδ of polymers with an ANN model based on the DFT calculation. React. Funct. Polym. 68(11), 1557–1562 (2008). https://doi.org/10.1016/j.reactfunctpolym.2008.08.009

    Article  CAS  Google Scholar 

  20. L.W. McKeen, Chapter 2 - Introduction to the Properties of Plastic and Elastomer Films, in Plastics Design Library, Film Properties of Plastics and Elastomers. ed. by L.W. McKeen (William Andrew Publishing, Norwich, 2012)

    Google Scholar 

  21. N.G. Parsonage, Chapter 6 - Thermal Conductivity, in The Commonwealth and International Library: Chemistry Division, The Gaseous State. ed. by N.G. Parsonage (Elsevier, Amsterdam, 1966)

    Google Scholar 

  22. M.P. Jahan, M. Rahman, Y.S. Wong, Micro-Electrical Discharge Machining (Micro-EDM): Processes, Varieties, and Applications, in Comprehensive Materials Processing. (Elsevier, Amsterdam, 2014)

    Google Scholar 

  23. F. Elahee, L. Rong, C. Breting, J. Bonilla-Cruz, T. Ceniceros, Z. Smith, J. Ge, X. Cheng, M. Xu, M. Yang, E. Ribeiro, E. Caldona, R. Advincula, Acrylic sealants as practicable direct ink writing (DIW) 3D-printable materials. MRS Commun. 13, 299–305 (2023). https://doi.org/10.1557/s43579-023-00343-4

    Article  CAS  Google Scholar 

  24. A. Espera, J. Dizon, A. Valino, Q. Chen, I. Silva, S. Nguyen, L. Rong, R. Advincula, On the 3D printability of silicone-based adhesives via viscous paste extrusion. MRS Commun. (2023). https://doi.org/10.1557/s43579-022-00318-x

    Article  Google Scholar 

  25. D. Gutierrez, E. Caldona, Z. Yang, X. Suo, X. Cheng, S. Dai, R. Espiritu, R. Advincula, 3D-printed PDMS-based membranes for CO2 separation applications. MRS Commun. (2022). https://doi.org/10.1557/s43579-022-00287-1

    Article  Google Scholar 

  26. A. Stephen, S. Bhoyate, P. Cao, R. Advincula, N. Dahotre, Y. Jiang, W. Choi, 3D-printed flexible anode for high-performance zinc ion battery. MRS Commun. 12, 894–901 (2022). https://doi.org/10.1557/s43579-022-00267-5

    Article  CAS  Google Scholar 

  27. R. Advincula, J. Dizon, E. Caldona, R. Viers, F. Siacor, R. Maalihan, A. Espera, On the progress of 3D-printed hydrogels for tissue engineering. MRS Commun. 8(3), 1–15 (2021). https://doi.org/10.1557/s43579-021-00069-1

    Article  CAS  Google Scholar 

  28. W. Niu, Z. Zhang, Q. Chen, P.-F. Cao, R. Advincula, Highly recyclable, mechanically isotropic and healable 3D-printed elastomers via Polyurea vitrimers. ACS Mater. Lett. 3(8), 1095–1103 (2021). https://doi.org/10.1021/acsmaterialslett.1c00132

    Article  CAS  Google Scholar 

  29. F. Siacor, Q. Chen, J. Zhao, L. Han, A. Valino, E. Taboada, E. Caldona, R. Advincula, On the additive manufacturing (3D Printing) of viscoelastic materials and flow behavior: from composites to food manufacturing. Addit. Manuf. 5(23), 102043 (2021). https://doi.org/10.1016/j.addma.2021.102043

    Article  Google Scholar 

  30. Q. Chen, J. Zhao, J. Ren, L. Rong, P.-F. Cao, R. Advincula, 3D printed multifunctional, hyperelastic silicone rubber foam. Adv. Func. Mater. 29(23), 1900469 (2019). https://doi.org/10.1002/adfm.201900469

    Article  CAS  Google Scholar 

  31. A. Jurago, R. Viers, A. Nguyen, E. Ribeiro, A. Espera Jr., E. Caldona, R. Advincula, On the 3D printing of polyelectrolyte complexes: a novel approach to overcome rheology constraints. MRS Commun. (2023). https://doi.org/10.1557/s43579-023-00415-5

    Article  Google Scholar 

  32. C. Nocheseda, G. Elahee, M. Santos, X. Cheng, R. Espera, R. Advincula, On the 3D printability of one-part moisture-curable polyurethanes via direct ink writing (DIW). MRS Commun. 13, 647–656 (2023). https://doi.org/10.1557/s43579-023-00407-5

    Article  CAS  Google Scholar 

  33. M. Islam, R. Rupom, P. Adhikari, Z. Demchuk, I. Popov, A. Sokolov, F. Wu, R. Advincula, N. Dahotre, Y. Jiang, W. Choi, Boosting piezoelectricity by 3D printing PVDF-MoS2 composite as a conformal and high-sensitivity piezoelectric sensor. Adv. Funct. Mat. 5, 2–6 (2023). https://doi.org/10.1002/adfm.202302946

    Article  CAS  Google Scholar 

  34. M. Espino, B. Tuazon, A. Espera Jr., C. Nocheseda, R. Manalang, J. Dizon, R. Advincula, Statistical methods for design and testing of 3D-printed polymers. MRS Commun. 13, 193–211 (2023). https://doi.org/10.1557/s43579-023-00332-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge technical support from Frontier Laboratories and Quantum Analytics. This work (or part of this work) was conducted in Oak Ridge National Laboratory Center for Nanophase Materials Sciences (CNMS) by R C Advincula. CNMS is a US Department of Energy Office of Science User Facility.

Funding

Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigoberto Advincula.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rigoberto Advincula was an editor of this journal during the review and decision stage. For the MRS Communications policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editormanuscripts/.

This article was updated to correct reference 32. The title of the cited article was truncated.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2675 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, A., Elahee, G.M.F., Cheng, X. et al. Formulated poly (butyl vinyl ether) adhesives as alternative materials for direct ink writing (DIW) 3D printing. MRS Communications 13, 1407–1415 (2023). https://doi.org/10.1557/s43579-023-00477-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00477-5

Keywords

Navigation