Skip to main content
Log in

Heavy metal sensing in water using electrochemically reduced graphene oxide

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Electrochemically reduced graphene oxide (ERGO) is a promising material for heavy metal ion detection due it its facile synthesis and electroactive defects. A simple ERGO sensor was fabricated directly on a glassy carbon electrode using cyclic voltammetry. Deposition cycles were optimized for sensitivity to the analytes, with 12 cycles found to be ideal. Differential pulse voltammetry was used to detect trace amounts of lead and cadmium, down to 5 nM for lead and 75 nM for cadmium (S/N > 3). The sensors were robust and their data reproducible, even in the presence of iron and zinc ions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

Code availability

Not applicable.

References

  1. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metals toxicity and the environment. EXS 101, 133–164 (2012). https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  2. V.D. Zheljazkov, L.E. Craker, B. Xing, Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environ. Exp. Bot. 58, 9–16 (2006). https://doi.org/10.1016/j.envexpbot.2005.06.008

    Article  CAS  Google Scholar 

  3. W. Tan, Q. Gao, C. Deng, Y. Wang, W.-Y. Lee, J.A. Hernandez-Viezcas, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Foliar exposure of Cu(OH)2 nanopesticide to basil (Ocimum basilicum): variety-dependent copper translocation and biochemical responses. J. Agric. Food Chem. 66, 3358–3366 (2018). https://doi.org/10.1021/acs.jafc.8b00339

    Article  CAS  Google Scholar 

  4. D.S. Kacholi, M. Sahu, Levels and health risk assessment of heavy metals in soil, water, and vegetables of Dar es Salaam, Tanzania. J. Chem. 2018, e1402674 (2018). https://doi.org/10.1155/2018/1402674

    Article  CAS  Google Scholar 

  5. L. Rodriguez-Freire, S. Avasarala, A.-M.S. Ali, D. Agnew, J.H. Hoover, K. Artyushkova, D.E. Latta, E.J. Peterson, J. Lewis, L.J. Crossey, A.J. Brearley, J.M. Cerrato, Post gold king mine spill investigation of metal stability in water and sediments of the animas river watershed. Environ. Sci. Technol. 50, 11539–11548 (2016). https://doi.org/10.1021/acs.est.6b03092

    Article  CAS  Google Scholar 

  6. S. Lee, S. Bong, J. Ha, M. Kwak, S.-K. Park, Y. Piao, Electrochemical deposition of bismuth on activated graphene-nafion composite for anodic stripping voltammetric determination of trace heavy metals. Sens. Actuators B Chem. 215, 62–69 (2015). https://doi.org/10.1016/j.snb.2015.03.032

    Article  CAS  Google Scholar 

  7. R. De Penning, N. Monzon, S. Padalkar, Flexible zinc oxide-based biosensors for detection of multiple analytes. J. Mater. Res. 37, 2942–2950 (2022). https://doi.org/10.1557/s43578-022-00693-0

    Article  CAS  Google Scholar 

  8. W. Gao, The chemistry of graphene oxide, in Graphene Oxide. (Springer, Cham, 2015), pp.61–95. https://doi.org/10.1007/978-3-319-15500-5_3

    Chapter  Google Scholar 

  9. S.Y. Toh, K.S. Loh, S.K. Kamarudin, W.R.W. Daud, Graphene production via electrochemical reduction of graphene oxide: synthesis and characterisation. Chem. Eng. J. 251, 422–434 (2014). https://doi.org/10.1016/j.cej.2014.04.004

    Article  CAS  Google Scholar 

  10. W. Peng, H. Li, Y. Liu, S. Song, A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 230, 496–504 (2017). https://doi.org/10.1016/j.molliq.2017.01.064

    Article  CAS  Google Scholar 

  11. S. Lee, S.-K. Park, E. Choi, Y. Piao, Voltammetric determination of trace heavy metals using an electrochemically deposited graphene/bismuth nanocomposite film-modified glassy carbon electrode. J. Electroanal. Chem. 766, 120–127 (2016). https://doi.org/10.1016/j.jelechem.2016.02.003

    Article  CAS  Google Scholar 

  12. J. Ping, Y. Wang, J. Wu, Y. Ying, Development of an electrochemically reduced graphene oxide modified disposable bismuth film electrode and its application for stripping analysis of heavy metals in milk. Food Chem. 151, 65–71 (2014). https://doi.org/10.1016/j.foodchem.2013.11.026

    Article  CAS  Google Scholar 

  13. S. Kumar Bikkarolla, P. Cumpson, P. Joseph, P. Papakonstantinou, Oxygen reduction reaction by electrochemically reduced graphene oxide. Faraday Discuss 173, 415–428 (2014). https://doi.org/10.1039/C4FD00088A

    Article  Google Scholar 

  14. M.B. Gumpu, M. Veerapandian, U.M. Krishnan, J.B.B. Rayappan, Simultaneous electrochemical detection of Cd(II), Pb(II), AS(III) and Hg(II) ions using ruthenium(II)-textured graphene oxide nanocomposite. Talanta 162, 574–582 (2017). https://doi.org/10.1016/j.talanta.2016.10.076

    Article  CAS  Google Scholar 

  15. Y. Shao, J. Wang, M. Engelhard, C. Wang, Y. Lin, Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem. 20, 743–748 (2010). https://doi.org/10.1039/B917975E

    Article  CAS  Google Scholar 

  16. F.X. Hu, J.L. Xie, S.J. Bao, L. Yu, C.M. Li, Shape-controlled ceria-reduced graphene oxide nanocomposites toward high-sensitive in situ detection of nitric oxide. Biosens. Bioelectron. 70, 310–317 (2015). https://doi.org/10.1016/j.bios.2015.03.056

    Article  CAS  Google Scholar 

  17. Y. Zuo, J. Xu, F. Jiang, X. Duan, L. Lu, G. Ye, C. Li, Y. Yu, Utilization of AuNPs dotted S-doped carbon nanoflakes as electrochemical sensing platform for simultaneous determination of Cu (II) and Hg (II). J. Electroanal. Chem. 794, 71–77 (2017). https://doi.org/10.1016/j.jelechem.2017.04.002

    Article  CAS  Google Scholar 

  18. Z. Guo, D. Li, X. Luo, Y. Li, Q.-N. Zhao, M. Li, Y. Zhao, T. Sun, C. Ma, Simultaneous determination of trace Cd(II), Pb(II) and Cu(II) by differential pulse anodic stripping voltammetry using a reduced graphene oxide-chitosan/poly-l-lysine nanocomposite modified glassy carbon electrode. J. Colloid Interface Sci. 490, 11–22 (2017). https://doi.org/10.1016/j.jcis.2016.11.006

    Article  CAS  Google Scholar 

  19. P.S. Adarakatti, V.K. Gangaiah, C.E. Banks, A. Siddaramanna, One-pot synthesis of Mn3O4/graphitic carbon nanoparticles for simultaneous nanomolar detection of Pb(II), Cd(II) and Hg(II). J. Mater. Sci. 53, 4961–4973 (2018). https://doi.org/10.1007/s10853-017-1896-6

    Article  CAS  Google Scholar 

  20. R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, M.A. Atieh, XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 45, 14439–14448 (2019). https://doi.org/10.1016/j.ceramint.2019.04.165

    Article  CAS  Google Scholar 

  21. S. Xu, L. Yong, P. Wu, One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts. ACS Appl. Mater. Interfaces 5, 654–662 (2013). https://doi.org/10.1021/am302076x

    Article  CAS  Google Scholar 

  22. J. Muñoz, R. Montes, M. Baeza, Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: characterization, architecture surface and bio-sensing. Trends Anal. Chem. 97, 201–215 (2017). https://doi.org/10.1016/j.trac.2017.08.012

    Article  CAS  Google Scholar 

  23. E. Casero, A.M. Parra-Alfambra, M.D. Petit-Domínguez, F. Pariente, E. Lorenzo, C. Alonso, Differentiation between graphene oxide and reduced graphene by electrochemical impedance spectroscopy (EIS). Electrochem. Commun. 20, 63–66 (2012). https://doi.org/10.1016/j.elecom.2012.04.002

    Article  CAS  Google Scholar 

  24. K.C. Honeychurch, J.P. Hart, D.C. Cowell, Voltammetric behavior and trace determination of lead at a mercury-free screen-printed carbon electrode. Electroanalysis 12, 171–177 (2000). https://doi.org/10.1002/(SICI)1521-4109(200002)12:3%3c171::AID-ELAN171%3e3.0.CO;2-Q

    Article  CAS  Google Scholar 

  25. P.M. Skitał, P.T. Sanecki, D. Saletnik, The investigation and modeling of two metals codeposition process. J. Electroanal. Chem. 778, 87–97 (2016). https://doi.org/10.1016/j.jelechem.2016.08.002

    Article  CAS  Google Scholar 

  26. H. Xing, J. Xu, X. Zhu, X. Duan, L. Lu, Y. Zuo, Y. Zhang, W. Wang, A new electrochemical sensor based on carboimidazole grafted reduced graphene oxide for simultaneous detection of Hg2+ and Pb2+. J. Electroanal. Chem. 782, 250–255 (2016). https://doi.org/10.1016/j.jelechem.2016.10.043

    Article  CAS  Google Scholar 

  27. P.M. Skitał, P.T. Sanecki, D. Saletnik, The modeling of simultaneous three metals codeposition investigated by cyclic voltammetry. J. Electroanal. Chem. 878, 114698 (2020). https://doi.org/10.1016/j.jelechem.2020.114698

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dapeng Jing from the Materials Analysis Research Laboratory for his help gathering and interpreting XPS data.

Funding

The authors would like to thank the Catron Fellowship, Brown Graduate Fellowship, and Iowa State University Startup Fund for their funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonal Padalkar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 298 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Penning, R., Padalkar, S. Heavy metal sensing in water using electrochemically reduced graphene oxide. MRS Communications 13, 531–537 (2023). https://doi.org/10.1557/s43579-023-00369-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00369-8

Keywords

Navigation