Skip to main content
Log in

A stable photoelectrochemical graphene/CdS/TiO2 film for nano-photoanode

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The photoelectrochemical (PEC) performance of TiO2 nano-photoanode films was seriously limited due to week photoresponse, effortless recombination of photogenerated electrons/holes, and instability. In this work, we used narrow bandgap semiconductor CdS quantum dots that decorated TiO2 nanotube arrays to enhance its PEC performance. In addition, ultra-thin transparent grapheme oxide (GO) spreads on the surface of TiO2 photoanode film to avoid its light corrosion and improve the stability. Scanning electron microscope (SEM) images showed that the layer GO is well distributed on the surface of CdS/TiO2 film, and composite film GO/CdS/TiO2 has good PEC stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Z. Liu, X. Yuan, S. Zhang, J. Wang, Q. Huang, N. Yu, Y. Zhu, L. Fu, F. Wang, Y. Chen, Y. Wu, Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater. 11, 12 (2019)

    Article  Google Scholar 

  2. E.S. Jung, M.A. Basit, M.A. Abbas, I. Ali, D.W. Kim, Y.M. Park, J.H. Bang, T.J. Park, Improved CdS quantum dot distribution on a TiO2 photoanode by an atomic-layer-deposited ZnS passivation layer for quantum dot-sensitized solar cells. Sol. Energy Mater. Sol. Cells 218, 2–58 (2020)

    Article  Google Scholar 

  3. Q. Wang, J. Qiao, J. Zhou, Fabrication of Ag@Ag2S core-shell nanoparticles sensitized TiO2 nanotube arrays with high photoelectrochemical properties. Phys. Rev. Lett. 3, Q157–Q161 (2014)

    CAS  Google Scholar 

  4. D. Jiang, H. Yu, H. Yu, Modified g-C3N4/TiO2 nanosheets/ZnO ternary facet coupled heterojunction for photocatalytic degradation of p-toluenesulfonic acid (p-TSA) under visible light. Physica E 85, 1–6 (2017)

    Article  CAS  Google Scholar 

  5. S.A. Pawar, D.S. Patil, A.C. Lokhande, M.G. Gang, J.C. Shin, P.S. Patil, J.H. Kim, Chemical synthesis of CdS onto TiO2 nanorods for quantum dot sensitized solar cells. Opt. Mater. 58, 46–50 (2016)

    Article  CAS  Google Scholar 

  6. J. Liu, H. Zhang, F. Navarro-Pardo, G.S. Selopal, S. Sun, Z.M. Wang, H. Zhao, F. Rosei, Hybrid surface passivation of PbS/CdS quantum dots for efficient photoelectrochemical hydrogen generation. Appl. Surf. Sci. 530, 64–89 (2020)

    Google Scholar 

  7. N. Zhao, Y. Hu, J. Du, G. Liu, B. Dong, Y. Yang, J. Peng, J. Li, M. Zhai, Ti3C2Tx MXene-derived amorphous TiO2-C nanosheetcocatalysts coupled CdS nanostructures for enhanced photocatalytic hydrogen evolution. Appl. Surf. Sci. 530, 60–63 (2020)

    Article  Google Scholar 

  8. X. Zheng, S. Liu, Y. Gu, S. Das, J. Zhao, Y. Gao, Optimization of photoelectrochemical performance of Ag2S/TiO2 interface by successive ionic layer adsorption and reaction. MRS Commun. 10, 194–199 (2020)

    Article  CAS  Google Scholar 

  9. X. Zheng, S. Das, Y. Gu, S. Liu, J. Borovilas, J. Zhao, Cadmium sulfide/lead sulfide co-sensitized TiO2 enhances photoelectrochemical performance and corrosion resistance of 304 stainless steel. MRS Commun. 25 1361–1369 (2019)

    Article  Google Scholar 

  10. M. Moztahida, D.S. Lee, Photocatalytic degradation of methylene blue with P25/graphene/polyacrylamide hydrogels: Optimization using response surface methodology. J. Hazard. Mater. 400, 12331 (2020)

    Article  Google Scholar 

  11. Zhang, Y., Zhu, M., Zhang, S., Cai, Y., Lv, Z., Fang, M., Tan, X., and Wang, X.: Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation. Applied Catalysis B-Environmental 279 (2020).

  12. Z. Wang, Y. Chen, L. Zhang, B. Cheng, J. Yu, J. Fan, Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 56, 143–150 (2020)

    Article  Google Scholar 

  13. X. Cheng, Y. Lu, Y.-X. Liu, G. Tian, X.-Y. Yang, One-pot synthesis of hierarchical CdS/MoS2/rGO with enhanced (photo) electrocatalytic activities. Chem. Phys. Lett. (2020). https://doi.org/10.1016/j.cplett.2020.138047

    Article  Google Scholar 

  14. X. Zheng, S. Das, Y. Gu, S. Liu, J. Zhao, Optimal engineering of CdS/PbS co-sensitized TiO2 nanotube arrays for enhanced photoelectrochemical performance. Ceram. Int. 46, 12050–12058 (2020)

    Article  CAS  Google Scholar 

  15. B.R. Sankapal, D.B. Salunkhe, S. Majumder, D.P. Dubal, Solution-processed CdS quantum dots on TiO2: light-induced electrochemical properties. RSC Adv. 6, 83175–83184 (2016)

    Article  CAS  Google Scholar 

  16. Yao, X., Hu, X., Zhang, W., Gong, X., Wang, X., Pillai, S.C., Dionysiou, D.D., and Wang, D.: Mie resonance in hollow nanoshells of ternary TiO2-Au-CdS and enhanced photocatalytic hydrogen evolution. Applied Catalysis B-Environmental 276 (2020).

  17. D.M. Tobaldi, D. Dvoranova, L. Lajaunie, N. Rozman, B. Figueiredo, M.P. Seabra, A.S. Skapin, J.J. Calvino, V. Brezova, J.A. Labrincha, Graphene-TiO2 hybrids for photocatalytic aided removal of VOCs and nitrogen oxides from outdoor environment. Chem. Eng. J. (Lausanne, Switzerland : 1996) 405, 126651–126651 (2021)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canfeng Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, K., Zhou, J., Tong, H. et al. A stable photoelectrochemical graphene/CdS/TiO2 film for nano-photoanode. MRS Communications 11, 57–61 (2021). https://doi.org/10.1557/s43579-021-00013-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00013-3

Navigation