Skip to main content
Log in

Investigation of 2D graphite support for development of iron–graphite composite as electrocatalyst for alkaline water oxidation reaction

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Inexpensive and easily available graphite powder is activated by a novel one-step solvothermal process and is tested for water oxidation reaction in an alkaline medium. The surface morphology, structure, and composition were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, and Brunauer Emmett Teller (BET) surface area measurements. The FeOx–graphite composite electrode exhibits remarkable catalytic performance almost close to the FeOx–graphene electrode chemically treated under similar experimental conditions. The FeOx–graphene composite electrode shows an onset potential of 1.61 V vs RHE and an overpotential of 570 mV at a current density of 10 mA cm−2 having stability for continuous 8 h of electrolysis. The Fe–O and Fe–O–C bonds are identified as inherent linkages responsible for electron transfer between FeOx and graphite. This one-step effective treatment for low-cost carbonaceous materials can be of great application toward improved alkaline electrolysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1.

Similar content being viewed by others

Data availability

Data will be available on reasonable request.

References

  1. M. El-Shafie, S. Kambara, Y. Hayakawa, Hydrogen production technologies overview. J. Power nd Energy Eng. 07(01), 107 (2019)

    Google Scholar 

  2. R. Kothari, D. Buddhi, R.L. Sawhney, Sources and technology for hydrogen production: a review. Int. J. Global Energy Issues 21(1–2), 154 (2004)

    Google Scholar 

  3. H.T. Arat, M.G. Sürer, State of art of hydrogen usage as a fuel on aviation. Eur. Mech. Sci. 2(1), 20 (2017)

    Google Scholar 

  4. S.S. Kumar, V. Himabindu, Hydrogen production by PEM water electrolysis: a review. Mater. Sci. Energy Technol. 2(3), 442 (2019)

    Google Scholar 

  5. S. Anantharaj, S.R. Ede, K. Karthick, S.S. Sankar, K. Sangeetha, P.E. Karthik, S. Kundu, Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ. Sci. 11(4), 744 (2018)

    CAS  Google Scholar 

  6. M.A. Khan, H. Zhao, W. Zou, Z. Chen, W. Cao, J. Fang, J. Xu, L. Zhang, J. Zhang, Recent progresses in electrocatalysts for water electrolysis. Electrochem. Energy Rev. 1(4), 483 (2018)

    Google Scholar 

  7. R. Tsuji, H. Masutani, Y. Haruyama, M. Niibe, S. Suzuki, S.I. Honda, Y. Matsuo, A. Heya, N. Matsuo, S. Ito, Water electrolysis using flame-annealed pencil-graphite rods. ACS Sustain Chem Eng 7(6), 5681 (2019)

    CAS  Google Scholar 

  8. F.E. Senftle, J.R. Grant, F.P. Senftle, Low-voltage DC/AC electrolysis of water using porous graphite electrodes. Electrochim. Acta 55(18), 5148 (2010)

    CAS  Google Scholar 

  9. P. Kamlesh, D. Mehra, S. Tavar, R.K. Prakash, A.K. Sharma, A.P. Srivastava, A. Singh, One-step high-temperature electrodeposition of Fe-based films as efficient water oxidation catalysts. Langmuir 39(17), 6088–6101 (2023)

    CAS  PubMed  Google Scholar 

  10. D. Tavar, N. Kamlesh, S. Prakash, M. Ashiq, P. Singh, P. Raizada, R.K. Sharma, A.K. Srivastava, A. Singh, Investigation of Li-rich manganese oxide spinel structures for electrochemical water oxidation catalysis. Dalton Trans. 51(33), 12558 (2022)

    CAS  PubMed  Google Scholar 

  11. L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel-Iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136(18), 6744 (2014)

    CAS  PubMed  Google Scholar 

  12. J. Zhang, J.R. Winkler, H.B. Gray, B.M. Hunter, Mechanism of nickel-iron water oxidation electrocatalysts. Energy Fuels 35(23), 19164 (2021)

    CAS  Google Scholar 

  13. N. Li, D.K. Bediako, R.G. Hadt, D. Hayes, T.J. Kempa, F. von Cube, D.C. Bell, L.X. Chen, D.G. Nocera, Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films. Proc. Natl. Acad. Sci. U.S.A. 114(7), 1486 (2017)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. R. Kostecki, F. McLarnon, Electrochemical and In situ raman spectroscopic characterization of nickel hydroxide electrodes: i pure nickel hydroxide. J. Electrochem. Soc. 144(2), 485 (1997)

    ADS  CAS  Google Scholar 

  15. B.S. Yeo, A.T. Bell, In situ raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J. Phys. Chem. C 116(15), 8394 (2012)

    CAS  Google Scholar 

  16. M. Huynh, D.K. Bediako, D.G. Nocera, A functionally stable manganese oxide oxygen evolution catalyst in acid. J. Am. Chem. Soc. 136(16), 6002 (2014)

    CAS  PubMed  Google Scholar 

  17. K. Klingan, F. Ringleb, I. Zaharieva, J. Heidkamp, P. Chernev, D. Gonzalez-Flores, M. Risch, A. Fischer, H. Dau, Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases. Chemsuschem 7(5), 1301 (2014)

    CAS  PubMed  Google Scholar 

  18. Y. Surendranath, M.W. Kanan, D.G. Nocera, Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132(46), 16501 (2010)

    CAS  PubMed  Google Scholar 

  19. T.M. Suzuki, T. Nonaka, A. Suda, N. Suzuki, Y. Matsuoka, T. Arai, S. Sato, T. Morikawa, Highly crystalline β-FeOOH(Cl) nanorod catalysts doped with transition metals for efficient water oxidation. Sustain. Energy Fuels 1(3), 636 (2017)

    CAS  Google Scholar 

  20. T. Wang, Z. Jiang, K.H. Chu, D. Wu, B. Wang, H. Sun, H.Y. Yip, T. An, H. Zhao, P.K. Wong, X-shaped Α-FeOOH with enhanced charge separation for visible-light-driven photocatalytic overall water splitting. Chemsuschem 11(8), 1365 (2018)

    CAS  PubMed  Google Scholar 

  21. H.G. Cha, M.J. Kang, I.C. Hwang, H. Kim, K.B. Yoon, Y.S. Kang, Manual assembly of nanocrystals for enhanced photoelectrochemical efficiency of hematite film. Chem. Commun. 51(29), 6407 (2015)

    CAS  Google Scholar 

  22. Y. Cheng, S.P. Jiang, Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Progress Nat. Sci. 25(6), 545 (2015)

    CAS  Google Scholar 

  23. D.R. Chowdhury, L. Spiccia, S.S. Amritphale, A. Paul, A. Singh, A robust iron oxyhydroxide water oxidation catalyst operating under near neutral and alkaline conditions. J. Mater. Chem. A 4(10), 3655 (2016)

    CAS  Google Scholar 

  24. J. Li, Z. Zhao, Y. Ma, Y. Qu, Graphene and their hybrid electrocatalysts for water splitting. ChemCatChem 9(9), 1554 (2017)

    CAS  Google Scholar 

  25. Y. Ma, H. Zhang, J. Xia, Z. Pan, X. Wang, G. Zhu, B. Zheng, G. Liu, L. Lang, Reduced CoFe2O4/graphene composite with rich oxygen vacancies as a high efficient electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 45(19), 11052 (2020)

    CAS  Google Scholar 

  26. F. Song, M.M. Busch, B. Lassalle-Kaiser, C.S. Hsu, E. Petkucheva, M. Bensimon, H.M. Chen, C. Corminboeuf, X. Hu, An unconventional iron nickel catalyst for the oxygen evolution reaction. ACS Cent. Sci. 5(3), 558 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. R.R. Rao, S. Corby, A. Bucci, M. García-Tecedor, C.A. Mesa, J. Rossmeisl, S. Giménez, J. Lloret-Fillol, I.E.L. Stephens, J.R. Durrant, Spectroelectrochemical analysis of the water oxidation mechanism on doped nickel oxides. J. Am. Chem. Soc. 144(17), 7622 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Bajdich, M. García-Mota, A. Vojvodic, J.K. Nørskov, A.T. Bell, Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135(36), 13521 (2013)

    CAS  PubMed  Google Scholar 

  29. A. Indra, P.W. Menezes, N.R. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeißer, P. Strasser, M. Driess, Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 136(50), 17530 (2014)

    CAS  PubMed  Google Scholar 

  30. R.S. Amin, A.E. Fetohi, D.Z. Khater, J. Lin, Y. Wang, C. Wang, K.M. El-Khatib, Selenium-transition metal supported on a mixture of reduced graphene oxide and silica template for water splitting. RSC Adv. 13(23), 15856–15871 (2023)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. L. Jiang, L. Qiu, T. Cen, Y.Y. Liu, X. Peng, Z. Ye, D. Yuan, Controllable Co@N-doped graphene anchored onto the NRGO toward electrocatalytic hydrogen evolution at all pH values. Chem. Commun. 56(4), 567 (2020)

    CAS  Google Scholar 

  32. J. Li, M. Yan, X. Zhou, Z.Q. Huang, Z. Xia, C.R. Chang, Y. Ma, Y. Qu, Mechanistic insights on ternary Ni2−xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Adv. Funct. Mater. 26(37), 6785 (2016)

    CAS  Google Scholar 

  33. B. Partoens, F.M. Peeters, From graphene to graphite: electronic structure around the K point. Phys. Rev. B 74(7), 075404 (2006)

    ADS  Google Scholar 

  34. S. Kumar, R. Srivastava, J. Chattopadhyay, MxOy/M/graphene coated multi-shelled nano-sphere as Bi-functional electrocatalysts for hydrogen and oxygen evolution. Int. J. Hydrogen Energy 46(1), 341 (2021)

    CAS  Google Scholar 

  35. M. Nemiwal, T.C. Zhang, D. Kumar, Graphene-based electrocatalysts: Hydrogen evolution reactions and overall water splitting. Int. J. Hydrogen Energy 46(41), 21401 (2021)

    CAS  Google Scholar 

  36. S. Kamali, M. Zhiani, H. Tavakol, Synergism effect of first row transition metals in experimental and theoretical activity of NiM/rGO alloys at hydrogen evolution reaction in alkaline electrolyzer. Renew. Energy 154, 1122 (2020)

    CAS  Google Scholar 

  37. S. Rarotra, S. Shahid, M. De, T.K. Mandal, D. Bandyopadhyay, Graphite/RGO coated paper μ-electrolyzers for production and separation of hydrogen and oxygen. Energy 228, 120490 (2021)

    CAS  Google Scholar 

  38. G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.M. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306 (2010)

    CAS  Google Scholar 

  39. K. Zhu, H. Qi, X. Sun, Z. Sun, Anodic oxidation of diuron using Co3O4/graphite composite electrode at low applied current. Electrochim. Acta 299, 853 (2019)

    CAS  Google Scholar 

  40. M. Rueffer, D. Bejan, N.J. Bunce, Graphite: An active or an inactive anode? Electrochim. Acta 56(5), 2246 (2011)

    CAS  Google Scholar 

  41. R. Tao, F. Li, X. Lu, F. Liu, J. Xu, D. Kong, C. Zhang, X. Tan, S. Ma, W. Shi, R. Mo, Y. Lu, High-conductivity–dispersibility graphene made by catalytic exfoliation of graphite for lithium-ion battery. Adv. Funct. Mater. 31(6), 2007630 (2021)

    CAS  Google Scholar 

  42. F.T. Johra, J.W. Lee, W.G. Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20(5), 2883 (2014)

    CAS  Google Scholar 

  43. R. Siburian, D.R. Sari, J. Gultom, H. Sihotang, S.L. Raja, J. Gultom, M. Supeno, Performance of graphite and graphene as electrodes in primary cell battery. J. Phys. Conf. Ser. 1116(4), 789 (2018)

    Google Scholar 

  44. A. Kaniyoor, S. Ramaprabhu, A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2(3), 032183 (2012)

    ADS  Google Scholar 

  45. A.C. Ferrari, A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects. SSCom 143(1–2), 47 (2007)

    ADS  CAS  Google Scholar 

  46. V. Zólyomi, J. Koltai, J. Kürti, Resonance Raman spectroscopy of graphite and graphene. Phys. Status Solidi B 248(11), 2435 (2011)

    ADS  Google Scholar 

  47. H.C. Lee, W.W. Liu, S.P. Chai, A.R. Mohamed, A. Aziz, C.S. Khe, N.M.S. Hidayah, U. Hashim, Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 7(26), 15644 (2017)

    ADS  CAS  Google Scholar 

  48. W. Wang, S. Guo, J. Zhong, J. Lin, M. Ozkan, C. Ozkan, Ultracapacitors based on graphene/MWNT composite films. Mater. Res. Soc. Symp. Proc. 1344, 87 (2012)

    Google Scholar 

  49. K.F. Kelly, W.E. Billups, Synthesis of Soluble Graphite and Graphene. Acc. Chem. Res. 46(1), 4 (2013)

    CAS  PubMed  Google Scholar 

  50. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prudhomme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36 (2008)

    ADS  CAS  PubMed  Google Scholar 

  51. L.S. Montagna, F.C. de Fim, G.B. Galland, N.R.S. de Basso, Synthesis of poly(propylene)/graphite nanocomposites by in situ polymerization. Macromol. Symp. 299–300(1), 48 (2011)

    Google Scholar 

  52. Y Javed K Ali K Akhtar JMI Hussain G Ahmad T Arif 2018 Handbook of Materials Characterization Springer International Publishing New York 147 216

    Google Scholar 

  53. T. Tawonezvi, B. Bladergroen, J. John, Development of FeCux/FeS/graphite composite electrode materials for iron-based alkaline batteries. Int. J. Electrochem. Sci. 15, 12428 (2020)

    CAS  Google Scholar 

  54. I.N. Shabanova, V.A. Trapeznikov, A study of the electronic structure of Fe3C, Fe3Al and Fe3Si by x-ray photoelectron spectroscopy. J. Electron. Spectros Relat. Phenomena 6(4), 297 (1975)

    CAS  Google Scholar 

  55. E. de Smit, B.M. Weckhuysen, The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chem. Soc. Rev. 37(12), 2758 (2008)

    PubMed  Google Scholar 

  56. Z. Tian, C. Wang, J. Yue, X. Zhang, L. Ma, Effect of a potassium promoter on the Fischer-Tropsch synthesis of light olefins over iron carbide catalysts encapsulated in graphene-like carbon. Catal. Sci. Technol. 9(11), 2728 (2019)

    CAS  Google Scholar 

  57. Q. Zhao, D. Li, G. Gao, W. Yuan, G. Hao, J. Li, Nanostructured iron(III) oxide catalyst electrodeposited from Fe(II) triflate for electrocatalytic water oxidation. Int. J. Hydrogen Energy 41(39), 17193 (2016)

    CAS  Google Scholar 

  58. F. Li, L. Bai, H. Li, Y. Wang, F. Yu, L. Sun, An iron-based thin film as a highly efficient catalyst for electrochemical water oxidation in a carbonate electrolyte. Chem. Commun. 52(33), 5753 (2016)

    CAS  Google Scholar 

  59. Y. Tang, Y. Shao, N. Chen, K.F. Yao, Rapid decomposition of Direct Blue 6 in neutral solution by Fe-B amorphous alloys. RSC Adv. 5(8), 6215 (2015)

    ADS  CAS  Google Scholar 

  60. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254(8), 2441 (2008)

    ADS  CAS  Google Scholar 

  61. L. Fan, P.F. Liu, X. Yan, L. Gu, Z.Z. Yang, H.G. Yang, S. Qiu, X. Yao, Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 7(1), 1 (2016)

    ADS  Google Scholar 

  62. R. Tsuji, Y. Koshino, H. Masutani, Y. Haruyama, M. Niibe, S. Suzuki, S. Nakashima, H. Fujisawa, S. Ito, Water electrolysis using thin Pt and RuOx catalysts deposited by a flame-annealing method on pencil-lead graphite-rod electrodes. ACS Omega 5(11), 6090 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Kamlesh acknowledges UGC for fellowship. Archana acknowledges SERB for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1058 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamlesh, Sharma, R.K., Mudgal, M. et al. Investigation of 2D graphite support for development of iron–graphite composite as electrocatalyst for alkaline water oxidation reaction. Journal of Materials Research 39, 663–674 (2024). https://doi.org/10.1557/s43578-023-01259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01259-4

Keywords

Navigation