Skip to main content
Log in

Precise construction of hyaluronic acid (HA)-coated drug-loaded iron oxide metal–organic frameworks: Investigation of cell death mechanism in neuroblastoma carcinoma cells

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

A Correction to this article was published on 16 February 2024

This article has been updated

Abstract

We constructed an iron (Fe2+) metal–organic framework (MOF) in this study. We loaded SN-38 into the MOF before coating the MOF's surface with hyaluronic acid (SN-38@HA@MOF) to improve its ability to target cancer cells. SN-38@HA@MOF can specifically target cancer tissues, has a high loading efficiency, is biocompatible, has a good monodispersity, has a robust cell absorption capacity, and produces significant intracellular reactive oxygen species levels. The in vitro cytotoxicity of the nanocomposites was investigated in different neuroblastoma cancer cells (SH-SY5Y and IMR 32). Even at a 200 µg/mL dosage, the IC50 range was as high as 85%, indicating that MOF and HA@MOF are non-cytotoxic to non-cancerous cells and have outstanding biocompatibility and low toxicity. Flow cytometric analyses investigated the cell death morphological investigation and mechanism. The adaptive multifunctional SN-38@HA@MOF has the potential to treat targeted neuroblastoma cancer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

Data will be made available on request.

Change history

References

  1. A.E. Evans, G.J. D’angio, K. Propert, J. Anderson, H.L. Hann, Prognostic factors in neuroblastoma. Cancer 59, 1853–1859 (1987)

    Article  CAS  PubMed  Google Scholar 

  2. S.B. Whittle, V. Smith, E. Doherty, S. Zhao, S. McCarty, P.E. Zage, Overview and recent advances in the treatment of neuroblastoma. Expert Rev. Anticancer Ther. 17, 369–386 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. J.R. Park, A. Eggert, H. Caron, Neuroblastoma: biology, prognosis, and treatment. Hematol. Oncol. Clin. North Am. 24, 65–86 (2010)

    Article  PubMed  Google Scholar 

  4. J.R. Park, A. Eggert, H. Caron, Neuroblastoma: biology, prognosis, and treatment. Pediatr. Clin. North Am. 55, 97–120 (2008)

    Article  PubMed  Google Scholar 

  5. G.M. Brodeur, Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer 3, 203–216 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. J.L. Weinstein, H.M. Katzenstein, S.L. Cohn, Advances in the diagnosis and treatment of neuroblastoma. Oncologist 8, 278–292 (2003)

    Article  PubMed  Google Scholar 

  7. R. Pandey, A. Gruslova, J. Chiou, A.J. Brenner, S. Tiziani, Stable isotope dilution LC-HRMS assay to determine free SN-38, total SN-38, and SN-38G in a tumor xenograft model after intravenous administration of antibody-Drug conjugate (Sacituzumab Govitecan). Anal. Chem. 92, 1260–1267 (2020). https://doi.org/10.1021/acs.analchem.9b04419

    Article  CAS  PubMed  Google Scholar 

  8. T.M. Cardillo, S.V. Govindan, R.M. Sharkey, P. Trisal, R. Arrojo, D. Liu, E.A. Rossi, C.-H. Chang, D.M. Goldenberg, Sacituzumab Govitecan (IMMU-132), an anti-Trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug. Chem. 26, 919–931 (2015). https://doi.org/10.1021/acs.bioconjchem.5b00223

    Article  CAS  PubMed  Google Scholar 

  9. J.A. Naumann, J.C. Widen, L.A. Jonart, M. Ebadi, J. Tang, D.J. Gordon, D.A. Harki, P.M. Gordon, SN-38 Conjugated gold nanoparticles activated by Ewing Sarcoma specific mRNAs exhibit in vitro and in vivo efficacy. Bioconjug. Chem. 29, 1111–1118 (2018). https://doi.org/10.1021/acs.bioconjchem.7b00774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D. Dutta, S.M. Alex, K.N. Bobba, K.K. Maiti, S. Bhuniya, New insight into a cancer theranostic probe: efficient cell-specific delivery of SN-38 guided by biotinylated Poly(vinyl alcohol). ACS Appl. Mater. Interfaces 8, 33430–33438 (2016). https://doi.org/10.1021/acsami.6b10580

    Article  CAS  PubMed  Google Scholar 

  11. G. Xu, C. Shi, D. Guo, L. Wang, Y. Ling, X. Han, J. Luo, Functional-segregated coumarin-containing telodendrimer nanocarriers for efficient delivery of SN-38 for colon cancer treatment. Acta Biomater. 21, 85–98 (2015). https://doi.org/10.1016/j.actbio.2015.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S.-T. Ning, S.-Y. Lee, M.-F. Wei, C.-L. Peng, S.Y.-F. Lin, M.-H. Tsai, P.-C. Lee, Y.-H. Shih, C.-Y. Lin, T.-Y. Luo, M.-J. Shieh, Targeting colorectal cancer stem-like cells with anti-CD133 antibody-conjugated SN-38 nanoparticles. ACS Appl. Mater. Interfaces 8, 17793–17804 (2016). https://doi.org/10.1021/acsami.6b04403

    Article  CAS  PubMed  Google Scholar 

  13. M. Barani, M.R. Hajinezhad, S. Shahraki, S. Mirinejad, M. Razlansari, S. Sargazi, A. Rahdar, A.M. Díez-Pascual, Preparation, characterization, and toxicity assessment of carfilzomib-loaded nickel-based metal-organic framework: Evidence from in-vivo and in-vitro experiments. J. Drug Deliv. Sci. Technol. 81, 104268 (2023). https://doi.org/10.1016/j.jddst.2023.104268

    Article  CAS  Google Scholar 

  14. W. Xu, T. Wang, J. Qian, J. Wang, G. Hou, Y. Wang, X. Cui, A. Suo, D. Wu, Fe (II)-hydrazide coordinated all-active metal organic framework for photothermally enhanced tumor penetration and ferroptosis-apoptosis synergistic therapy. Chem. Eng. J. 437, 135311 (2022)

    Article  CAS  Google Scholar 

  15. T. Simon-Yarza, A. Mielcarek, P. Couvreur, C. Serre, Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv. Mater. 30, 1707365 (2018)

    Article  Google Scholar 

  16. H. Zhang, J. Zhang, Q. Li, A. Song, H. Tian, J. Wang, Z. Li, Y. Luan, Site-specific MOF-based immunotherapeutic nanoplatforms via synergistic tumor cells-targeted treatment and dendritic cells-targeted immunomodulation. Biomaterials 245, 119983 (2020). https://doi.org/10.1016/j.biomaterials.2020.119983

    Article  CAS  PubMed  Google Scholar 

  17. J. Cao, X. Li, H. Tian, Metal-organic framework (MOF)-based drug delivery. Curr. Med. Chem. 27, 5949–5969 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. K. Suresh, A.J. Matzger, Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal–organic framework (MOF). Angew. Chem. Int. Ed. 58, 16790–16794 (2019)

    Article  CAS  Google Scholar 

  19. L.-Q. Fu, X.-Y. Chen, M.-H. Cai, X.-H. Tao, Y.-B. Fan, X.-Z. Mou, Surface engineered metal-organic frameworks (MOFs) based novel hybrid systems for effective wound healing: a review of recent developments. Front. Bioeng. Biotechnol. 8, 576348 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  20. M. Ibrahim, R. Sabouni, G.A. Husseini, Anti-cancer drug delivery using metal organic frameworks (MOFs). Curr. Med. Chem. 24, 193–214 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. S.S. Nadar, L. Vaidya, S. Maurya, V.K. Rathod, Polysaccharide based metal organic frameworks (polysaccharide–MOF): a review. Coord. Chem. Rev. 396, 1–21 (2019)

    Article  CAS  Google Scholar 

  22. M. Wu, Y. Yang, Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29, 1606134 (2017)

    Article  Google Scholar 

  23. C. Chu, J. Deng, Y. Man, Y. Qu, Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes. Mater. Sci. Eng. C 78, 258–264 (2017). https://doi.org/10.1016/j.msec.2017.04.069

    Article  CAS  Google Scholar 

  24. A.K. Yadav, P. Mishra, S. Jain, P. Mishra, A.K. Mishra, G.P. Agrawal, Preparation and characterization of HA–PEG–PCL intelligent core–corona nanoparticles for delivery of doxorubicin. J. Drug Target. 16, 464–478 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. R.S. Clarke, M.S. Bruderer, K.P. Ha, A.M. Edwards, RexAB is essential for the mutagenic repair of Staphylococcus aureus DNA damage caused by co-trimoxazole. Antimicrob. Agents Chemother. (2019). https://doi.org/10.1128/AAC.00944-19

    Article  PubMed  PubMed Central  Google Scholar 

  26. J. Wang, X. Wang, Y. Cao, T. Huang, D. Song, H. Tao, Therapeutic potential of hyaluronic acid/chitosan nanoparticles for the delivery of curcuminoid in knee osteoarthritis and an in vitro evaluation in chondrocytes. Int. J. Mol. Med. 42, 2604–2614 (2018). https://doi.org/10.3892/ijmm.2018.3817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. W. Shi, Y. Kong, Y. Su, M.A. Kuss, X. Jiang, X. Li, J. Xie, B. Duan, Tannic acid-inspired, self-healing, and dual stimuli responsive dynamic hydrogel with potent antibacterial and anti-oxidative properties. J. Mater. Chem. B 9, 7182–7195 (2021). https://doi.org/10.1039/D1TB00156F

    Article  CAS  PubMed  Google Scholar 

  28. V. Grover, P. Chopra, M. Mehta, Natural prokaryotic antimicrobial peptide coated titanium discs prevent Staphylococcus auerus growth and biofilm formation – Implications on peri-implant infections. Mater. Today Proceed. (2021). https://doi.org/10.1016/j.matpr.2021.04.383

    Article  Google Scholar 

  29. M. Shakourian, Y. Yamini, M. Safari, Facile magnetization of metal–organic framework TMU-6 for magnetic solid-phase extraction of organophosphorus pesticides in water and rice samples. Talanta 218, 121139 (2020). https://doi.org/10.1016/j.talanta.2020.121139

    Article  CAS  PubMed  Google Scholar 

  30. P. Raju, T. Ramalingam, T. Nooruddin, S. Natarajan, In vitro assessment of antimicrobial, antibiofilm and larvicidal activities of bioactive nickel metal organic framework. J. Drug Deliv. Sci. Technol. 56, 101560 (2020). https://doi.org/10.1016/j.jddst.2020.101560

    Article  CAS  Google Scholar 

  31. M.A. Andrés, M. Benzaqui, C. Serre, N. Steunou, I. Gascón, Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance. J. Colloid Interface Sci. 519, 88–96 (2018). https://doi.org/10.1016/j.jcis.2018.02.058

    Article  CAS  PubMed  ADS  Google Scholar 

  32. L. Huang, S. Zhao, F. Fang, T. Xu, M. Lan, J. Zhang, Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 268, 120557 (2021). https://doi.org/10.1016/j.biomaterials.2020.120557

    Article  CAS  PubMed  Google Scholar 

  33. V. Sokolova, G. Nzou, S.B. van der Meer, T. Ruks, M. Heggen, K. Loza, N. Hagemann, F. Murke, B. Giebel, D.M. Hermann, A.J. Atala, M. Epple, Acta Biomater. 111, 349–362 (2020). https://doi.org/10.1016/j.actbio.2020.04.023

    Article  CAS  PubMed  Google Scholar 

  34. C. He, Y. Hu, L. Yin, C. Tang, C. Yin, Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31, 3657–3666 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.065

    Article  CAS  PubMed  Google Scholar 

  35. R. Pilliadugula, J. Haribabu, M.K. Mohamed Subarkhan, C. Echeverria, R. Karvembu, N. Gopalakrishnan, J. Sci.: Adv. Mater. Dev. 6, 351–363 (2021). https://doi.org/10.1016/j.jsamd.2021.03.003

    Article  CAS  Google Scholar 

  36. S. Swaminathan, J. Haribabu, M.K. Mohamed Subarkhan, D. Gayathri, N. Balakrishnan, N. Bhuvanesh, C. Echeverria, R. Karvembu, Impact of aliphatic acyl and aromatic thioamide substituents on the anticancer activity of Ru(ii)-p-cymene complexes with acylthiourea ligands—in vitro and in vivo studies. Dalton Trans. 50, 16311–16325 (2021). https://doi.org/10.1039/D1DT02611A

    Article  CAS  PubMed  Google Scholar 

  37. G. Kalaiarasi, M. Mohamed Subarkhan, C.K. Fathima Safwana, S. Sruthi, T. Sathiya Kamatchi, B. Keerthana, S.L. Ashok Kumar, Inorg. Chim. Acta 535, 120863 (2022). https://doi.org/10.1016/j.ica.2022.120863

    Article  CAS  Google Scholar 

  38. N. Mohan, M.K. Mohamed Subarkhan, R. Ramesh, Synthesis, antiproliferative activity and apoptosis-promoting effects of arene ruthenium(II) complexes with N O chelating ligands. J. Organometal. Chem. (2018). https://doi.org/10.1016/j.jorganchem.2018.01.022

    Article  Google Scholar 

  39. S. Balaji, M.K. Mohamed Subarkhan, R. Ramesh, H. Wang, D. Semeril, Synthesis and structure of Arene Ru(II) N∧O-chelating complexes in vitro cytotoxicity and cancer cell death mechanism. Organometallics 39, 1366–1375 (2020). https://doi.org/10.1021/acs.organomet.0c00092

    Article  CAS  Google Scholar 

  40. S. Klein, M. Kızaloğlu, L. Portilla, H. Park, T. Rejek, J. Hümmer, K. Meyer, R. Hock, L.V.R. Distel, M. Halik, Enhanced in vitro biocompatibility and water dispersibility of magnetite and cobalt ferrite nanoparticles employed as ROS formation enhancer in radiation cancer therapy. Small 14, 1704111 (2018)

    Article  Google Scholar 

  41. A. Arnida, H.G. Malugin, Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J. Appl. Toxicol. 30, 212–217 (2010). https://doi.org/10.1002/jat.1486

    Article  CAS  Google Scholar 

  42. K. Giriraj, M.S. Mohamed Kasim, K. Balasubramaniam, S.K. Thangavel, J. Venkatesan, S. Suresh, P. Shanmugam, C. Karri, Various coordination modes of new coumarin Schiff bases toward Cobalt (III) ion: Synthesis, spectral characterization, in vitro cytotoxic activity, and investigation of apoptosis. Appl. Organometal. Chem. 36, e6536 (2022). https://doi.org/10.1002/aoc.6536

    Article  CAS  Google Scholar 

  43. M.K. Mohamed Subarkhan, L. Ren, B. Xie, C. Chen, Y. Wang, H. Wang, Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur. J. Med. Chem. (2019). https://doi.org/10.1016/j.ejmech.2019.06.061

    Article  PubMed  Google Scholar 

  44. S. Swaminathan, J. Haribabu, M.K. Mohamed Subarkhan, G. Manonmani, K. Senthilkumar, N. Balakrishnan, N. Bhuvanesh, C. Echeverria, R. Karvembu, Coordination behavior of Acylthiourea Ligands in their Ru(II)–Benzene Complexes─Structures and anticancer activity. Organometallics 41, 1621–1630 (2022). https://doi.org/10.1021/acs.organomet.2c00127

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JD and DL: was involved in conceptualisation, methodology, investigation, and writing the original draft. YW and RC: took part in conceptualisation, methodology, investigation, and writing-reviewing editing. DL and JP: participated in resources and writing-reviewing and editing.

Corresponding authors

Correspondence to Denghui Liu or Jindi Peng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article was updated to correct the affiliation of author Jindi Peng.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Li, D., Wang, Y. et al. Precise construction of hyaluronic acid (HA)-coated drug-loaded iron oxide metal–organic frameworks: Investigation of cell death mechanism in neuroblastoma carcinoma cells. Journal of Materials Research 39, 489–500 (2024). https://doi.org/10.1557/s43578-023-01244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01244-x

Keywords

Navigation