Skip to main content
Log in

Effect of particle size and distribution of hollow spheres on the compressive behavior of aluminum matrix syntactic foams

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Aluminum matrix syntactic foams (AMSFs) reinforced by Al2O3 hollow sphere (HS) with three different distributions of the particles were successfully produced by a self-developed counter-gravity infiltration casting technique. The effects of the size and distribution of particles on the quasi-static compressive behavior and failure mechanisms of the AMSFs was investigated. Microstructural images showed a clear interface between the fillers and matrix and no obvious shrinkage cavity was detected. The quasi-static compressive stress–strain curve of the AMSFs underwent three stages, namely linear-elastic, plateau, and then densification stages. The long plateau stage indicated that the AMSFs have excellent energy absorption capacity. The compressive strength and specific energy absorption capacity of the syntactic foam was lower when smaller particles were used and the compressive strength of bimodal AMSFs was much lower than that of monomodal AMSFs. The deformation of the AMSFs under compressive load, indicates that the distribution of the particles has an important influence on the failure mechanism of the AMSFs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings cannot be shared at this time as these data also form part of an ongoing study. The data are available from the corresponding author on reasonable request.

References

  1. I.N. Orbulov, A. Szlancsik, On the mechanical properties of aluminum matrix syntactic foams. Adv. Eng. Mater. 20, 1700980 (2018)

    Google Scholar 

  2. L.O. Afolabi, Z.M. Ariff, S.F.S. Hashim, T. Alomayri, S. Mahzan, K.-A. Kamarudin, I.D. Muhammad, Syntactic foams formulations, production techniques, and industry applications: a review. J. Mater. Res. Technol. 9, 10698–10718 (2020)

    CAS  Google Scholar 

  3. Ç. Bolat, İ. C. AkgÜN, A. GÖKsenlİ, On the way to real applications: Aluminum matrix syntactic foams. Euro. Mech. Sci. 4, 131–141 (2020)

  4. I.N. Orbulov, A. Kemény, Á. Filep, Z. Gácsi, Compressive characteristics of bimodal aluminium matrix syntactic foams. Compos. Part A 124, 105479 (2019)

    CAS  Google Scholar 

  5. G.A. Rocha Rivero, B.F. Schultz, J.B. Ferguson, N. Gupta, P.K. Rohatgi, Compressive properties of al-a206/sic and mg-az91/sic syntactic foams. J. Mater. Res. 28, 2426–2435 (2013)

    CAS  Google Scholar 

  6. B. Katona, G. Szebényi, I.N. Orbulov, Fatigue properties of ceramic hollow sphere filled aluminium matrix syntactic foams. Mater. Sci. Eng. A 679, 350–357 (2017)

    CAS  Google Scholar 

  7. A. Szlancsik, B. Katona, A. Kemeny, D. Karoly, On the filler materials of metal matrix syntactic foams. Materials 12, 2023 (2019)

    CAS  Google Scholar 

  8. C. Wang, F. Jiang, S. Shao, T. Yu, C. Guo, Acoustic properties of 316l stainless steel hollow sphere composites fabricated by pressure casting. Metals 10, 1047 (2020)

    Google Scholar 

  9. A.D. Akinwekomi, Microstructural characterisation and corrosion behaviour of microwave-sintered magnesium alloy az61/fly ash microspheres syntactic foams. Heliyon 5, e01531 (2019)

    CAS  Google Scholar 

  10. A.D. Akinwekomi, J.A. Adebisi, A.A. Adediran, Compressive characteristics of aluminum-fly ash syntactic foams processed by microwave sintering. Metall. Mater. Trans. A 50, 4257–4260 (2019)

    CAS  Google Scholar 

  11. K.N. Braszczyńska-Malik, J. Kamieniak, Az91 magnesium matrix foam composites with fly ash cenospheres fabricated by negative pressure infiltration technique. Mater. Charact. 128, 209–216 (2017)

    Google Scholar 

  12. H. Puga, V.H. Carneiro, C. Jesus, J. Pereira, V. Lopes, Influence of particle diameter in mechanical performance of al expanded clay syntactic foams. Compos. Struct. 184, 698–703 (2018)

    Google Scholar 

  13. I.N. Orbulov, A. Szlancsik, A. Kemény, D. Kincses, Compressive mechanical properties of low-cost, aluminium matrix syntactic foams. Compos. Part A 135, 105923 (2020)

    CAS  Google Scholar 

  14. S. Broxtermann, M. Vesenjak, L. Krstulović-Opara, T. Fiedler, Quasi static and dynamic compression of zinc syntactic foams. J. Alloys Compd. 768, 962–969 (2018)

    CAS  Google Scholar 

  15. N. Movahedi, M. Vesenjak, L. Krstulović-Opara, I.V. Belova, G.E. Murch, T. Fiedler, Dynamic compression of functionally-graded metal syntactic foams. Compos. Struct. 261, 113308 (2021)

    CAS  Google Scholar 

  16. I.V.B.M. Taherishargh, G.E. Murch, T. Fiedler, Pumice/aluminium syntacticfoam. Mater. Sci. Eng. A 635, 102–108 (2015)

    CAS  Google Scholar 

  17. K. Al-Sahlani, S. Broxtermann, D. Lell, T. Fiedler, Effects of particle size on the microstructure and mechanical properties of expanded glass-metal syntactic foams. Mater. Sci. Eng. A 728, 80–87 (2018)

    CAS  Google Scholar 

  18. S. Broxtermann, M.M. Su, H. Hao, T. Fiedler, Comparative study of stir casting and infiltration casting of expanded glass-aluminium syntactic foams. J. Alloys Compd. 845, 155415 (2020)

    CAS  Google Scholar 

  19. Y. Lin, Q. Zhang, J. Chang, H. Wang, X. Feng, J. Wang, Microstructural characterization and compression mechanical response of glass hollow spheres/al syntactic foams with different mg additions. Mater. Sci. Eng. A 766, 138338 (2019)

    CAS  Google Scholar 

  20. Q. Zhang, Y. Lin, H. Chi, J. Chang, G. Wu, Quasi-static and dynamic compression behavior of glass cenospheres/5a03 syntactic foam and its sandwich structure. Compos. Struct. 183, 499–509 (2018)

    Google Scholar 

  21. V. Manakari, G. Parande, M. Doddamani, M. Gupta, Evaluation of wear resistance of magnesium/glass microballoon syntactic foams for engineering/biomedical applications. Ceram. Int. 45, 9302–9305 (2019)

    CAS  Google Scholar 

  22. G. Anbuchezhiyan, B. Mohan, D. Sathianarayanan, T. Muthuramalingam, Synthesis and characterization of hollow glass microspheres reinforced magnesium alloy matrix syntactic foam. J. Alloys Compd. 719, 125–132 (2017)

    CAS  Google Scholar 

  23. P. Kubelka, C. Kádár, N. Jost, Effect of the interface on the compressive properties of magnesium syntactic foams. Mater. Lett. 287, 129293 (2021)

    CAS  Google Scholar 

  24. L. Pan, Y. Yang, M.U. Ahsan, D.D. Luong, N. Gupta, A. Kumar, P.K. Rohatgi, Zn-matrix syntactic foams: Effect of heat treatment on microstructure and compressive properties. Mater. Sci. Eng. A 731, 413–422 (2018)

    CAS  Google Scholar 

  25. E. Linul, D. Lell, N. Movahedi, C. Codrean, T. Fiedler, Compressive properties of zinc syntactic foams at elevated temperatures. Compos. Part B 167, 122–134 (2019)

    CAS  Google Scholar 

  26. S. Pandey, A.N.C. Venkat, D.P. Mondal, J.D. Majumdar, A.K. Jha, H. Rao, H. Kumar, Effect of cenosphere size and volume fraction on the microstructure and deformation behavior of ti-cenosphere syntactic foam made through powder metallurgy route. Mater. Perform. Charac. 5, 20160021 (2016)

    Google Scholar 

  27. Q. Yang, B. Yu, H. Hu, G. Hu, Z. Miao, Y. Wei, W. Sun, Melt flow and solidification during infiltration in making steel matrix syntactic foams. Mater. Sci. Technol. 35, 1831–1839 (2019)

    CAS  Google Scholar 

  28. H. Sazegaran, A.-R. Kiani-Rashid, J.V. Khaki, Effects of sphere size on the microstructure and mechanical properties of ductile iron–steel hollow sphere syntactic foams. Int. J. Miner. Metall. Mater. 23, 676–682 (2016)

    CAS  Google Scholar 

  29. L. Pérez, M. Villalobos, C. Órdenes, R.A.L. Drew, C. Ruiz-Aguilar, I. Alfonso, Elastic modulus estimation for copper syntactic foams reinforced with iron hollow spheres of different wall thicknesses. J. Mater. Eng. Perform. 28, 100–106 (2018)

    Google Scholar 

  30. C. Qian, C. Liang, Z. He, W. Ji, Effect of layer thickness in layered aluminum matrix syntactic foam. Materials 12, 4172 (2019)

    CAS  Google Scholar 

  31. M. Taherishargh, E. Linul, S. Broxtermann, T. Fiedler, The mechanical properties of expanded perlite-aluminium syntactic foam at elevated temperatures. J. Alloys Compd. 737, 590–596 (2018)

    CAS  Google Scholar 

  32. C.S. Chaitanya, R.N. Rao, Surface failure of syntactic foams in sliding contact. Mater. Today: Proc. 15, 63–67 (2019)

    CAS  Google Scholar 

  33. A. Vishwakarma, D.P. Mondal, S. Birla, S. Das et al., Effect of cenosphere size on the dry sliding wear behaviour lm13-cenosphere syntactic foam. Tribol. Int. 110, 8–22 (2017)

    CAS  Google Scholar 

  34. A. Szlancsik, B. Katona, I.N. Orbulov, M. Taherishargh, T. Fiedler, Fatigue properties of ep/a356 aluminium matrix syntactic foams with different densities. IOP Confer. Ser.: Mater. Sci. Eng. 426, 012045 (2018)

    Google Scholar 

  35. B. Katona, A. Szlancsik, T. Tábi, I.N. Orbulov, Compressive characteristics and low frequency damping of aluminium matrix syntactic foams. Mater. Sci. Eng. A 739, 140–148 (2019)

    CAS  Google Scholar 

  36. Y. Zhang, Y. Zhao, Hysteretic energy dissipation in aluminium matrix syntactic foam under intermittent cyclic compression. Materialia 6, 100286 (2019)

    CAS  Google Scholar 

  37. C. Kadar, F. Chmelik, D. Ugi, K. Mathis, M. Knapek, Damage characterization during compression in a perlite-aluminum syntactic foam. Materials 12, 3342 (2019)

    CAS  Google Scholar 

  38. M.J. Nayyeri, S.M.H. Mirbagheri, Evaluation of failure mechanisms of high strength tailor-made metallic foams (TMFs). Mater. Lett. 185, 89–91 (2016)

    CAS  Google Scholar 

  39. Q. Yu, Y. Zhao, A. Dong, Y. Li, Preparation and properties of c/c hollow spheres and the energy absorption capacity of the corresponding aluminum syntactic foams. Materials 11, 997 (2018)

    Google Scholar 

  40. A. Kemény, B. Leveles, T. Bubonyi, I.N. Orbulov, Effect of particle size and volume ratio of ceramic hollow spheres on the mechanical properties of bimodal composite metal foams. Compos. Part A 140, 106152 (2021)

    Google Scholar 

  41. N. Movahedi, G.E. Murch, I.V. Belova, T. Fiedler, Functionally graded metal syntactic foam: fabrication and mechanical properties. Mater. Design 168, 107652 (2019)

    CAS  Google Scholar 

  42. A. Pandey, S. Birla, D.P. Mondal, S. Das, V.A.N. Ch, Compressive deformation behavior and strain rate sensitivity of al-cenosphere hybrid foam with mono-modal, bi-modal and tri-modal cenosphere size distribution. Mater. Charact. 144, 563–574 (2018)

    CAS  Google Scholar 

  43. M. Cao, F. Jiang, C. Guo, Y. Li, T. Yu, R. Qin, Interface characterization and mechanical property of an aluminum matrix syntactic foam with multi-shelled hollow sphere structure. Ceram. Int. 48, 1882–18833 (2022)

    Google Scholar 

  44. K.N. Braszczyńska-Malik, J. Kamieniak, Analysis of interface between components in az91 magnesium alloy foam composite with ni-p coated fly ash cenospheres. J. Alloys Compd. 720, 352–359 (2017)

    Google Scholar 

  45. ISO 13314:2011—Mechanical testing of metals—ductility testing—compression test for porous and cellular metals (2011)

  46. N. Movahedi, S.M.H. Mirbagheri, Comparison of the energy absorption of closed-cell aluminum foam produced by various foaming agents. Strength Mater. 48, 444–449 (2016)

    CAS  Google Scholar 

  47. I. Duarte, M. Vesenjak, L. Krstulović-Opara, Compressive behaviour of unconstrained and constrained integral-skin closed-cell aluminium foam. Compos. Struct. 154, 231–238 (2016)

    Google Scholar 

  48. M. HeidariGhaleh, N. Ehsani, H.R. Baharvandi, Compressive properties of a356 closed-cell aluminum foamed with a caco3 foaming agent without stabilizer particles. Met. Mater. Int. 27, 3856–3861 (2020)

    Google Scholar 

  49. N. Movahedi, E. Linul, L. Marsavina, The temperature effect on the compressive behavior of closed-cell aluminum-alloy foams. J. Mater. Eng. Perform. 27, 99–108 (2017)

    Google Scholar 

Download references

Funding

This work is funded by the Guangdong Major Project of Basic and Applied Basic Research (2021B0301030002), Basic and Applied Basic Research Fund Project of Guangdong Province (2021A1515110333), Liaoning Province Applied Basic Research Program Project (2023JH2/101600064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanzhan Yang or Yong Ding.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, Y., Fu, C., Fu, Y. et al. Effect of particle size and distribution of hollow spheres on the compressive behavior of aluminum matrix syntactic foams. Journal of Materials Research 38, 4408–4419 (2023). https://doi.org/10.1557/s43578-023-01153-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01153-z

Keywords

Navigation