Skip to main content
Log in

Effect of cation insertion on the stability of gliding arc plasma-precipitated mesoporous MnO2 dye bleaching catalysts

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

α-MnO2 and γ-MnO2 polymorphs were, respectively, obtained from the plasma precipitation of KMnO4 and Mn(CH3COO)3⋅2H2O precursors. The obtained powders were calcined at 150 °C, 210 °C and 400 °C, and characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), nitrogen physisorption and Scanning electron microscopy (SEM). As a result, the calcination does not significantly affect textural properties and crystalline structure of the α-MnO2, while γ-MnO2 is transformed into β-MnO2 for temperatures above 400 °C. The thermal stability α-MnO2 is due to the K+ ions insertion in its 4.6 Å × 4.6 Å tunnels and corroborated the catalytic performance of 100, 98, 98 and 97% compared to 71, 54, 52 and 48% for γ-MnO2 after four successive reuse cycles on Tartrazine Yellow dye. The insertion of cationic species (K+, Na+, Mg2+) into the structure of MnO2 reinforces its crystalline structure and promotes the formation of powerful oxidizing species through oxygen vacant sites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. X.F. Guo, G.J. Kim, Synthesis of ordered mesoporous manganese oxides by double replication for use as an electrode material. Bull. Korean Chem. Soc. 32, 186–190 (2011). https://doi.org/10.5012/bkcs.2011.32.1.186

    Article  CAS  Google Scholar 

  2. C. Wang, R. Yan, M. Cai, Y. Liu, S. Li, Appl. Surf. Sci. 610, 155346 (2023). https://doi.org/10.1016/j.apsusc.2022.155346

    Article  CAS  Google Scholar 

  3. M. Cai, Y. Liu, C. Wang, W. Lin, S. Li, Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: Degradation pathway mechanism and toxicity assessment. Sep. Purif. Technol. 304, 122401 (2023). https://doi.org/10.1016/j.seppur.2022.122401

    Article  CAS  Google Scholar 

  4. M. Cai, C. Wang, Y. Liu, R. Yan, S. Li, Boosted photocatalytic antibiotic degradation performance of Cd0.5Zn0.5S/carbon dots/Bi2WO6 S-scheme heterojunction with carbon dots as the electron bridge. Sep. Purif. Technol. 300, 121892 (2022). https://doi.org/10.1016/j.seppur.2022.121892

    Article  CAS  Google Scholar 

  5. S. Li, M. Cai, Y. Liu, C. Wang, R. Yan, X. Chen, Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Adv. Powder. Mater. 2, 100073 (2023). https://doi.org/10.1016/j.apmate.2022.100073

    Article  Google Scholar 

  6. S. Li, M. Cai, C. Wang, Ta3N5/CdS Core-Shell S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Removal of Antibiotic Tetracycline and Cr(VI): Performance and Mechanism Insights. Adv. Fiber Mater. 5, 994–1007 (2023). https://doi.org/10.1007/s42765-022-00253-5

    Article  CAS  Google Scholar 

  7. C. Hongmin, P.K. Chu, J.H. He, T. Hu, M. Yang, Porous magnetic manganese oxide nanostructures: synthesis and their applications in water treatment. J. Colloid Interface Sci. 359, 68–74 (2011). https://doi.org/10.1016/j.jcis.2011.03.089

    Article  CAS  Google Scholar 

  8. H.J. Wang, X.Y. Chen, Kinetic analysis and energy efficiency of phenol degradation in a plasma-photocatalysis system. J. Hazard. Mater. 186, 1888–1892 (2011). https://doi.org/10.1016/j.jhazmat.2010.12.088

    Article  CAS  Google Scholar 

  9. S. Li, C. Wang, Y. Liu, Y. Liu, M. Cai, W. Zhao, X. Duan, Chem. Eng. J. 455, 140943 (2023). https://doi.org/10.1016/j.cej.2022.140943

    Article  CAS  Google Scholar 

  10. J. Dai, S.F.Y. Li, K.S. Siow, Z. Gao, Synthesis and characterization of the hollandite-type MnO2 as a cathode material in lithium batteries. Electrochim. Acta 45, 2211–2217 (2000). https://doi.org/10.1016/S0013-4686(99)00441-7

    Article  CAS  Google Scholar 

  11. J. Zhao, Z. Tao, J. Liang, J. Chen, Facile synthesis of γ-MnO2 structures and their applications in rechargeable Li-ion batteries. Cryst. Growth Des. 8(8), 2799–2805 (2008). https://doi.org/10.1021/CG701044B

    Article  CAS  Google Scholar 

  12. J. Liu, Y. Son, J. Cai, X. Shen, S. Suib, M. Aindow, Size control, metal substitution, and catalytic application of cryptomelane nanomaterials prepared using cross-linking reagents. Chem. Mater. 16, 276–285 (2004). https://doi.org/10.1021/cm0303989

    Article  CAS  Google Scholar 

  13. V. Subramanian, H. Zhu, B. Wie, Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte. Chem. Phys. Lett. 453, 242–249 (2008). https://doi.org/10.1016/j.cplett.2008.01.042

    Article  CAS  Google Scholar 

  14. S.H. Kim, S.J. Kim, M.O. Seung, Preparation of layered MnO2 via thermal decomposition of KMnO4 and its electrochemical characterizations. Chem. Mater. 11, 557–563 (1999). https://doi.org/10.1021/CM9801643

    Article  CAS  Google Scholar 

  15. K.A.M. Ahmed, H. Peng, K. Wu, K. Huang, Hydrothermal preparation of nanostructured manganese oxides (MnOx) and their electrochemical and photocatalytic properties. Chem. Eng. J. 172, 531–539 (2011). https://doi.org/10.1016/j.cej.2011.05.070

    Article  CAS  Google Scholar 

  16. X. Zhang, P. Yu, H. Zhang, D. Zhang, X. Sun, Y. Ma, Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim. Acta 89, 523–529 (2013). https://doi.org/10.1016/j.electacta.2012.11.089

    Article  CAS  Google Scholar 

  17. Y. Li, J. Wang, Y. Zhang, M. Banis, J. Liu, D. Geng, R. Li, X. Sun, Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method. J. Colloid Interface Sci. 369, 123–128 (2012). https://doi.org/10.1016/j.jcis.2011.12.013

    Article  CAS  Google Scholar 

  18. E. Acayanka, D.S. Kuete, G.Y. Kamgang, S. Nzali, S. Laminsi, P.T. Ndifon, Synthesis, characterization and photocatalytic applications of TiO2/SnO2 nanocomposite obtained under non-thermal plasma condition at atmospheric pressure. Plasma Chem. Plasma Process. 36, 799–811 (2016). https://doi.org/10.1007/s11090-016-9699-0

    Article  CAS  Google Scholar 

  19. F.W. Boyom-Tatchemo, S. Nzali, G. Kamgang-Youbi, A. Tiya-Djowe, D. Kuete-Saa, E. Acayanka, S. Laminsi, E.M. Gaigneaux, Gliding arc plasma synthesis of MnO2 nanorods for the plasma-catalytic bleaching of azoic Amaranth Red dye. Top. Catal. 60, 962–972 (2017). https://doi.org/10.1007/s11244-017-0761-9

    Article  CAS  Google Scholar 

  20. F.W. Boyom-Tatchemo, F. Devred, G. Ndiffo-Yemeli, S. Laminsi, E.M. Gaigneaux, Plasma-induced reactions synthesis of nanosized α-, γ- and δ-MnO2 catalysts for dye degradation. Appl. Catal. B: Environ. 26, 118159 (2020). https://doi.org/10.1016/j.apcatb.2019.118159

    Article  CAS  Google Scholar 

  21. R. Kannan, K. Govindan, S. Selvaraj, P. Ravichandiran, S. Vasanthkumar, Birnessite nanorod-mediated decomposition of methylene blue with common oxidants. Appl. Water. Sci. 3, 335–341 (2013). https://doi.org/10.1007/s13201-012-0058-x

    Article  CAS  Google Scholar 

  22. A.H. Germeay, R.G. El-Sharkawy, I.A. Mansour, A.B. Zaki, Catalytic activity of polyaniline/MnO2 composites towards the oxidative decolourization of organic dyes. Appl. Catal. B: Environ. 80, 106–115 (2008). https://doi.org/10.1016/j.apcatb.2007.11.014

    Article  CAS  Google Scholar 

  23. S. Hamoudi, A. Sayari, K. Belkacemi, L. Bonneviot, F. Larachi, Catalytic wet oxidation of phenol over PtxAg1-xMnO2/CeO2 catalysts. Catal. Today 62, 379–388 (2000). https://doi.org/10.1016/S0920-5861(00)00439-9

    Article  CAS  Google Scholar 

  24. S.-L. Chiam, S.-Y. Pung, F.-Y. Yeoh, Recent developments in MnO2-based photocatalysts for organic dye removal: a review. Environ. Sci. Pollut. Res 27, 5759–5778 (2020). https://doi.org/10.1007/s11356-019-07568-8

    Article  CAS  Google Scholar 

  25. W. Gong, X. Meng, X. Tang, P. Ji, Core-shell MnO2-SiO2 nanorods for catalyzing the removal of dyes from water. Catalysts 7, 19 (2017). https://doi.org/10.3390/catal7010019

    Article  CAS  Google Scholar 

  26. A.M. Hashem, H.M. Abuzeid, D. Mikhailova, H. Ehrenberg, A. Mauger, C.M. Julien, Structural and electrochemical properties of α-MnO2 doped with cobalt. J. Mater. Sci. -Mater. Electron. 47, 2479–2485 (2012). https://doi.org/10.1007/s10853-011-6071-x

    Article  CAS  Google Scholar 

  27. F. Teng, S. Santhanagopalan, D.D. Meng, Microstructure control of MnO2/CNT hybrids under in-situ hydrothermal conditions. Solid State Sci. 12, 1677–1682 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.07.026

    Article  CAS  Google Scholar 

  28. J. Wu, H. Huang, L. Yu, J. Hu, Controllable hydrothermal synthesis of MnO2 nanostructures. Adv. Mater. Phys. Chem. 3, 201–205 (2013). https://doi.org/10.4236/ampc.2013.33029

    Article  CAS  Google Scholar 

  29. D. Portehault, S. Cassaignon, E. Baudrin, J.-P. Jolivet, Morphology control of cryptomelane type MnO2 nanowires by soft chemistry. Growth mechanisms on aqueous medium. Chem. Mater. 19(22), 5410–5417 (2007). https://doi.org/10.1021/cm071654a

    Article  CAS  Google Scholar 

  30. A.K. Sinha, M. Pradhan, T. Pal, Morphology evolution of two-dimensional MnO2 nanosheets and their shape transformation to one-dimensional ultralong MnO2 nanowires for robust catalytic activity. J. Phys. Chem. C 117, 23976–23986 (2013). https://doi.org/10.1021/jp403527p

    Article  CAS  Google Scholar 

  31. F.W. Boyom-Tatchemo, F. Devred, S. Laminsi, E.M. Gaigneaux, Temporal post-discharge reactions effect on the oxidative catalytic properties of plasma-precipitated α-MnO2 nanorods. Appl. Catal., A 616, 118109 (2021). https://doi.org/10.1016/j.apcata.2021.118109

    Article  CAS  Google Scholar 

  32. D. Zheng, S. Sun, W. Fan, H. Yu, C. Fan, G. Cao, Z. Yin, X. Song, One-step preparation of single-crystalline β-MnO2 nanotubes. J. Phys. Chem. B 109, 16439–16443 (2005). https://doi.org/10.1021/jp052370l

    Article  CAS  Google Scholar 

  33. C. Ze-hua, H. Ke-Long, L. Su-Qin, W. Hai-Yan, Preparation and characterization of spinel LiMn2O4 nanorods as lithium-ion battery cathodes. Trans. Nonferrous Met. Soc. China 20, 2309–2313 (2010). https://doi.org/10.1016/S1003-6326(10)60646-2

    Article  CAS  Google Scholar 

  34. A.K. Thapa, Y. Hidaka, H. Hagiwara, S. Ida, T. Ishihara, Mesoporous β-MnO2 air electrode modified with Pd for rechargeability in lithium-Air battery. J. Electrochem. Soc. 158(12), A1483–A1489 (2011). https://doi.org/10.1149/2.090112jes

    Article  CAS  Google Scholar 

  35. M.W. Dose, S.W. Donne, Kinetic analysis of γ-MnO2 thermal treatment. J. Therm. Anal. Calorim. 105, 113–122 (2011). https://doi.org/10.1007/s10973-011-1445-5

    Article  CAS  Google Scholar 

  36. J. Luo, H.T. Zhu, H.M. Fan, J.K. Kang, H.L. Shin, G.H. Rao, J.B. Li, Z.M. Du, Z.X. Shen, Synthesis of single-crystal tetragonal α-MnO2 nanotubes. J. Phys. Chem. Lett. 112, 12594–12598 (2008). https://doi.org/10.1021/jp8052967

    Article  CAS  Google Scholar 

  37. X. Huang, C. Pan, X. Huang, Preparation and characterization of γ-MnO2/CNTs nanocomposite. Mater. Lett. 61, 934–936 (2007). https://doi.org/10.1016/j.matlet.2006.06.040

    Article  CAS  Google Scholar 

  38. Y. Xiong, Y. Xie, Z. Li, C. Wu, Growth of well-aligned γ-MnO2 monocrystalline nanowires through a coordination-polymer-precursor route. Chem. Eur. J. 9(7), 1645–1651 (2008). https://doi.org/10.1002/chem.200390189

    Article  Google Scholar 

  39. S. Saha, A. Pal, Microporous assembly of MnO2 nanosheets for malachite green degradation. Sep. Sci. Technol. 134, 26–36 (2014). https://doi.org/10.1016/j.seppur.2014.07.021

    Article  CAS  Google Scholar 

  40. P. Zhang, X. Li, Q. Zhao, S. Liu, Synthesis and optical property of one-dimensional spinel ZnMn2O4 nanorods. Nanoscale Res. Lett. 6(1), 323 (2011). https://doi.org/10.1186/1556-276X-6-323

    Article  CAS  Google Scholar 

  41. M.A. Ahmed-Hashem, Preparation, characterization, and electrochemical performance of γ-MnO2 and LiMn2O4 as cathodes of lithium batteries. Ionics 10, 206–212 (2004). https://doi.org/10.1007/BF02382818

    Article  Google Scholar 

  42. - D. Dias, R. Monteiro, C. Mota-Caetano, A. Pimentel, E. Fortunato, Study of MnO2 coverage on Ta capacitors with high CV powders, Electronics Components, Assemblies, and Materials Association, Symposium, October-November 2007, Barcelona, Spain (2007), Doi: Rui Monteiro.

  43. L. Wang, J. Wang, F. Jia, C. Wang, M. Chen, Nanoporous carbon synthesized coal tar pitch and its capacitive performance. J. Mater. Chem. A 1, 9498–9507 (2013). https://doi.org/10.1039/C3TA10426E

    Article  CAS  Google Scholar 

  44. H. Lin, D. Chen, H. Liu, X. Zou, T. Chen, Effect of MnO2 crystalline structure on the catalytic oxidation of formaldehyde. Aerosol Air Qual. Res. 17, 1011–1020 (2017). https://doi.org/10.4209/aaqr.2017.01.0013

    Article  CAS  Google Scholar 

  45. L. Li, C. Nan, J. Lu, Q. Peng, Y. Li, Nanotube α-MnO2: High surface area and enhanced lithium battery properties. Chem. Commun. 48, 6945–6947 (2012). https://doi.org/10.1039/C2CC32306K

    Article  CAS  Google Scholar 

  46. Y. Zhao, J. Misch, C.-A. Wang, Facile synthesis and characterization of MnO2 nanomaterials as supercapacitor electrode materials. J. Mater. Sci. -Mater. Electron. 27, 5533–5542 (2016). https://doi.org/10.1007/s10854-016-4457-x

    Article  CAS  Google Scholar 

  47. P.F. Smith, B.J. Deibert, S. Kaushik, G. Gardner, S. Hwang, H. Wang, J.F. Al-Sharab, E. Garfunkel, L. Fabris, J. Li, G.C. Dismukes, Coordination geometry and oxidation state requirements of corner-sharing MnO6 octahedra for water oxidation catalysis: An investigation of manganite (γ-MnOOH). Catalysis 6, 2089–2099 (2016). https://doi.org/10.1021/acscatal.6b00099

    Article  CAS  Google Scholar 

  48. E. Saputra, S. Muhammad, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. Environ. Sci. Technol. 47, 5882–5887 (2013). https://doi.org/10.1021/es400878c

    Article  CAS  Google Scholar 

  49. Y. Peng, H. Chang, Y. Dai, J. Li, Structural and surface effect of MnO2 for low temperature selective catalytic reduction of NO with NH3. Procedia Environ. 18, 384–390 (2013). https://doi.org/10.1016/j.proenv.2013.04.051

    Article  CAS  Google Scholar 

  50. H. Ying-Ying, W. Zhao-Yin, J. Jun, Rapid low-cost synthesis and enhanced electrochemical properties of mesoporous Mn3O4 nanorods. J. Inorg. Mater. 28(9), 1045–1050 (2013). https://doi.org/10.3724/SP.J.1077.2013.13146

    Article  CAS  Google Scholar 

  51. X. Li, T. Fan, Z. Liu, J. Ding, Q. Guo, D. Zhang, Synthesis and hierarchical pore structure of biomorphic manganese oxide derived from woods. J. Eur. Ceram. Soc. 26, 3657–3664 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.10.015

    Article  CAS  Google Scholar 

  52. S. Saha, A. Pal, Microporous assembly of MnO2 nanosheets for malachite green degradation. Sep. Purif. Technol. 134, 26–36 (2014). https://doi.org/10.1016/j.seppur.2014.07.021

    Article  CAS  Google Scholar 

  53. L.-T. Tseng, Y. Lu, H.M. Fan, Y. Wang, X. Liu, P. Munroe, S. Li, J. Yi, Magnetic properties in α-MnO2 doped with alkaline elements. Sci. Rep. 5, 9094 (2015). https://doi.org/10.1038/srep09094

    Article  CAS  Google Scholar 

  54. J. Qu, L. Shi, C. He, F. Gao, B. Li, Q. Zhou, H. Hu, G. Shao, X. Wang, J. Qui, Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue. Carbon 66, 485–492 (2014). https://doi.org/10.1016/j.carbon.2013.09.025

    Article  CAS  Google Scholar 

  55. T. Uematsu, Y. Miyamoto, Y. Ogasawara, K. Suzuki, K. Yamaguchi, N. Mizuno, Molybdenum-doped α-MnO2 as an efficient reusable heterogeneous catalyst for aerobic sulfide oxygenation. Catal. Sci. Technol. 6, 222–233 (2016). https://doi.org/10.1039/C5CY01552A

    Article  Google Scholar 

  56. C. Liu, D. Pan, X. Tang, M. Hou, Q. Zhou, J. Zhou, Degradation of Rhodamine B by the α-MnO2/peroxymonosulfate system. Water Air Soil Pollut. 227(92), 1–10 (2016). https://doi.org/10.1007/s11270-016-2782-6

    Article  CAS  Google Scholar 

  57. N.A. Fathy, S.E. El-Shafey, O.I. El-Shafey, W.S. Mohamed, Oxidative degradation of RB19 dye by a novel γ-MnO2/MWCNT nanocomposite catalyst with H2O2. J. Environ. Chem. Eng. 1(4), 858–864 (2013). https://doi.org/10.1016/j.jece.2013.07.028

    Article  CAS  Google Scholar 

  58. C.M. Cellier, V. Vromman, V. Ruaux, E.M. Gaigneaux, P. Grange, Sulfation mechanism and catalytic behavior of manganese oxide in the oxidation of methanetiol. J. Phys. Chem. B 108, 9989–10001 (2004). https://doi.org/10.1021/jp049158m

    Article  CAS  Google Scholar 

  59. C. Cellier, S. Lambert, E.M. Gaigneaux, C. Poleunis, V. Ruaux, P. Eloy, C. Lahousse, P. Bertrand, J.-P. Pirard, P. Grange, Investigation of the preparation an activity of gold catalyst in the total oxidation of n-hexane. Appl. Catal., B (2007). https://doi.org/10.1016/J.APCATB.2006.01.026

    Article  Google Scholar 

  60. C. Liu, J. Wang, L. Xiang, Synthesis and surface characterization of γ-MnO2 nanostructures. J. Nanomater. 4, 389634 (2013). https://doi.org/10.1155/2013/389634

    Article  CAS  Google Scholar 

  61. F.A. Caliman, L.C. Apostol, D. Bulgariu, L. Bulgariu, M. Gavrilescu, Study regarding the sorption of erythrosine from aqueous solution onto soil. Environ. Eng. Manag. J. (2009). https://doi.org/10.30638/eemj.2009.196

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the “Université catholique de Louvain” for scholarship given to F.W. Boyom Tatchemo from the “Coopération au développement” program.

Funding

Université Catholique de Louvain.

Author information

Authors and Affiliations

Authors

Contributions

FWBT: Investigation, Conceptualization, Methodology, Data treatment and interpretation, Writing—original draft, Writing—review & editing. FD: XPS characterization, Data treatment and review. EA: Review & editing. GKY: Review & editing. SN: Review & editing. SL: Resources, Supervision. EG: Funding acquisition, Project administration, Conceptualization, Supervision, Data treatment and interpretation, Resources, Writing—review & editing, Validation.

Corresponding authors

Correspondence to Franck W. Boyom-Tatchemo or Eric M. Gaigneaux.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 475 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyom-Tatchemo, F.W., Devred, F., Acayanka, E. et al. Effect of cation insertion on the stability of gliding arc plasma-precipitated mesoporous MnO2 dye bleaching catalysts. Journal of Materials Research 38, 4144–4156 (2023). https://doi.org/10.1557/s43578-023-01129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01129-z

Keywords

Navigation