Skip to main content

Advertisement

Log in

A dual-stimuli-responsive delivery system for poorly water-soluble drug based on iron oxide nanoparticles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study aimed to prepared a dual-stimuli-responsive delivery system based on iron oxide nanoparticles (IONPs) and Pluronic F127—Folic acid conjugation (F127-FA) for poorly water-soluble drugs. Oleic acid-coated IONPs were prepared and modified with F127-FA using ultrasonic treatment to form IONPs/F127-FA meanwhile Quercetin (QCT)—a poorly water-soluble drug was encapsulated into the nano-system. The results illustrated the successful preparation of IONPs/F127-FA and its saturation magnetization value was found to be 25.6 emu/g. Moreover, QCT was effectively entrapped into the synthesized IONPs/F127-FA and showed 23.45 ± 7.23% loading capacity and 89.87 ± 2.05% entrapment efficiency. Additionally, the MTT assay revealed that loaded QCT in IONPs/F127-FA showed high inhibition against the human breast cancer cells compared to the free one, which was attributed to the ability to bind to folate receptor α of IONPs/F127-FA. These results suggested that the IONPs/F127-FA system would be a promising dual-stimuli-responsive drug delivery system in cancer treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request.

References

  1. A. Tewabe, A. Abate, M. Tamrie, A. Seyfu, E.A. Siraj, Targeted drug delivery—from magic bullet to nanomedicine: principles, challenges, and future perspectives. J. Multidiscip. Healthc. 14, 1711 (2021)

    Article  Google Scholar 

  2. A. Mansour, M. Romani, A.B. Acharya, B. Rahman, E. Verron, Z. Badran, Drug delivery systems in regenerative medicine: an updated review. Pharmaceutics 15(2), 695 (2023)

    Article  CAS  Google Scholar 

  3. R. Liu, C. Luo, Z. Pang, J. Zhang, S. Ruan, M. Wu, L. Wang, T. Sun, N. Li, L. Han, Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin. Chem. Lett. 34(2), 107518 (2023)

    Article  CAS  Google Scholar 

  4. P. Kundu, S. Das, N. Chattopadhyay, Switching from endogenous to exogenous delivery of a model drug to DNA through micellar engineering. J. Photochem. Photobiol. B 203, 111765 (2020)

    Article  CAS  Google Scholar 

  5. X. Lin, J. Wu, Y. Liu, N. Lin, J. Hu, B. Zhang, Stimuli-responsive drug delivery systems for the diagnosis and therapy of lung cancer. Molecules 27(3), 948 (2022)

    Article  CAS  Google Scholar 

  6. M. Zhang, W. Hu, C. Cai, Y. Wu, J. Li, S. Dong, Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Mater. Today Bio. 14, 100223 (2022)

    Article  CAS  Google Scholar 

  7. J. Zhang, Y. Lin, Z. Lin, Q. Wei, J. Qian, R. Ruan, X. Jiang, L. Hou, J. Song, J. Ding, Stimuli-responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy. Adv. Sci. 9(5), 2103444 (2022)

    Article  CAS  Google Scholar 

  8. F. Reyes-Ortega, Á.V. Delgado, E.K. Schneider, B.L. Checa Fernández, G.R. Iglesias, Magnetic nanoparticles coated with a thermosensitive polymer with hyperthermia properties. Polymers 10(1), 10 (2018)

    Article  Google Scholar 

  9. D. Stanicki, T. Vangijzegem, I. Ternad, S. Laurent, An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin. Drug Deliv. 19(3), 321–335 (2022)

    Article  CAS  Google Scholar 

  10. H. Aslam, S. Shukrullah, M.Y. Naz, H. Fatima, H. Hussain, S. Ullah, M.A. Assiri, Current and future perspectives of multifunctional magnetic nanoparticles based controlled drug delivery systems. J. Drug Deliv. Sci. Technol. 67, 102946 (2022)

    Article  CAS  Google Scholar 

  11. T.N. Le Thi, T.H. Nguyen, D.Q. Hoang, T.V. Tran, N.T. Nguyen, D.H. Nguyen, Development of new magnetic nanoparticles: Oligochitosan obtained by γ-rays and –coated Fe3O4 nanoparticles. Appl. Surf. Sci. 422, 863–868 (2017)

    Article  Google Scholar 

  12. K. McNamara, S.A.M. Tofail, Nanoparticles in biomedical applications. Adv. Phys.: X 2(1), 54–88 (2016)

    Google Scholar 

  13. Y.A. Koksharov, S. Gubin, I. Taranov, G. Khomutov, Y.V. Gulyaev, Magnetic nanoparticles in medicine: progress, problems, and advances. J. Commun. Technol. Electron. 67(2), 101–116 (2022)

    Article  Google Scholar 

  14. J. Yoo, C. Park, G. Yi, D. Lee, H. Koo, Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 11(5), 640 (2019)

    Article  CAS  Google Scholar 

  15. N. Kang, S. Son, S. Min, H. Hong, C. Kim, J. An, J.S. Kim, H. Kang, Stimuli-responsive ferroptosis for cancer therapy. Chem. Soc. Rev. 52, 4006 (2023)

    Article  Google Scholar 

  16. F. Xie, M. Wang, Q. Chen, T. Chi, S. Zhu, P. Wei, Y. Yang, L. Zhang, X. Li, Z. Liao, Endogenous stimuli-responsive nanoparticles for cancer therapy: from bench to bedside. Pharmacol. Research (2022). https://doi.org/10.1016/j.phrs.2022.106522

    Article  Google Scholar 

  17. P.S. Ginter, P.J. McIntire, X. Cui, L. Irshaid, Y. Liu, Z. Chen, S.J. Shin, Folate receptor alpha expression is associated with increased risk of recurrence in triple-negative breast cancer. Clin. Breast Cancer 17(7), 544–549 (2017)

    Article  CAS  Google Scholar 

  18. P. Ebrahimnejad, A.S. Taleghani, K. Asare-Addo, A. Nokhodchi, An updated review of folate-functionalized nanocarriers: a promising ligand in cancer. Drug Discov. Today 27(2), 471–489 (2022)

    Article  CAS  Google Scholar 

  19. S.A. Kularatne, P.S. Low, Targeting of nanoparticles: folate receptor. Methods Mol. Biol. 624, 249–265 (2010)

    Article  CAS  Google Scholar 

  20. N. Kaur, P. Popli, N. Tiwary, R. Swami, Small molecules as cancer targeting ligands: shifting the paradigm. J. Control. Release 355, 417–433 (2023)

    Article  CAS  Google Scholar 

  21. M. Narvekar, H.Y. Xue, J.Y. Eoh, H.L. Wong, Nanocarrier for poorly water-soluble anticancer drugs—barriers of translation and solutions. AAPS PharmSciTech 15(4), 822–833 (2014)

    Article  CAS  Google Scholar 

  22. K.U. Khan, M.U. Minhas, S.F. Badshah, M. Suhail, A. Ahmad, S. Ijaz, Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 291, 120301 (2022)

    Article  CAS  Google Scholar 

  23. Z. Warnken, H.D. Smyth, R.O. Williams, Route-specific challenges in the delivery of poorly water-soluble drugs, in Formulating poorly water soluble drugs. ed. by R.O. Williams, D.A. Davis, D.A. Miller (Springer, Cham, 2022)

    Google Scholar 

  24. T.T.C. Nguyen, C.K. Nguyen, T.H. Nguyen, N.Q. Tran, Highly lipophilic pluronics-conjugated polyamidoamine dendrimer nanocarriers as potential delivery system for hydrophobic drugs. Mater. Sci. Eng. C 70, 992–999 (2017)

    Article  CAS  Google Scholar 

  25. PJ, R.J., O.S. Oluwafemi, S. Thomas, and A.O. Oyedeji, Recent advances in drug delivery nanocarriers incorporated in temperature-sensitive Pluronic F-127–A critical review. J. Drug Deliv. Sci. Technol. 72, 103390 (2022)

    Article  Google Scholar 

  26. C. Rossi, A. Donati, S. Ulgiati, M. Sansoni, Structural investigation of folic acid by nmr proton relaxation and molecular mechanics analysis. J. Magn. Reson 14, 181–185 (1992)

    CAS  Google Scholar 

  27. C. Guo, Y. Hu, H. Qian, J. Ning, S. Xu, Magnetite (Fe3O4) tetrakaidecahedral microcrystals: synthesis, characterization, and micro-Raman study. Mater. Charact. 62(1), 148–151 (2011)

    Article  CAS  Google Scholar 

  28. T.T. Hoang Thi, D.H. Nguyen Tran, L.G. Bach, H. Vu-Quang, D.C. Nguyen, K.D. Park, D.H. Nguyen, Functional magnetic core-shell system-based iron oxide nanoparticle coated with biocompatible copolymer for anticancer drug delivery. Pharmaceutics 11(3), 120 (2019)

    Article  Google Scholar 

  29. C. Guo, H. Liu, J. Wang, J. Chen, Conformational structure of triblock copolymers by FT-raman and FTIR spectroscopy. J. Colloid Interface Sci. 209(2), 368–373 (1999)

    Article  CAS  Google Scholar 

  30. Y.-L. Su, J. Wang, H.-Z. Liu, FTIR Spectroscopic study on effects of temperature and polymer composition on the structural properties of PEO−PPO−PEO block copolymer micelles. Langmuir 18(14), 5370–5374 (2002)

    Article  CAS  Google Scholar 

  31. E.M.K.A.D. Mohammed, Qualitative and quantitative determination of folic acid in tablets by FTIR spectroscopy. IJAPBC 2014, 3 (2014)

    Google Scholar 

  32. D.-H. Zhang, G.-D. Li, J.-X. Li, J.-S. Chen, One-pot synthesis of Ag–Fe3O4 nanocomposite: a magnetically recyclable and efficient catalyst for epoxidation of styrene. Chem. Commun. 29, 3414–3416 (2008)

    Article  Google Scholar 

  33. S.A. Gómez-Lopera, P.R.F. Delgado, A.V. Delgado, Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J. Colloid Interface sci. 240(1), 40–47 (2001)

    Article  Google Scholar 

  34. F. Li, J. Sun, H. Zhu, X. Wen, C. Lin, D. Shi, Preparation and characterization novel polymer-coated magnetic nanoparticles as carriers for doxorubicin. Colloids Surf. B: Biointerfaces 88(1), 58–62 (2011)

    Article  CAS  Google Scholar 

  35. P. Wang, J. Jiang, The Volatility Asymmetry of Rate of Return on CSI 300 Index at Different Stages, in Advances in Information Technology and Industry Applications. ed. by D. Zeng (Springer, Berlin, 2012)

    Google Scholar 

  36. H. Patir, S.K.S. Sarada, S. Singh, T. Mathew, B. Singh, A. Bansal, Quercetin as a prophylactic measure against high altitude cerebral edema. Free Radical Biol. Med. 53(4), 659–668 (2012)

    Article  CAS  Google Scholar 

  37. M.-Y. Wong, G.N.C. Chiu, Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model. Nanomed. Nanotechnol. Biol. Med. 7(6), 834–840 (2011)

    Article  CAS  Google Scholar 

  38. M. Kakran, N.G. Sahoo, L. Li, Dissolution enhancement of quercetin through nanofabrication, complexation, and solid dispersion. Colloids Surf B Biointerfaces 88(1), 121–130 (2011)

    Article  CAS  Google Scholar 

  39. Y. Gao, Y. Wang, Y. Ma, A. Yu, F. Cai, W. Shao, G. Zhai, Formulation optimization and in situ absorption in rat intestinal tract of quercetin-loaded microemulsion. Colloids Surf., B 71(2), 306–314 (2009)

    Article  CAS  Google Scholar 

  40. S. Khan, S. Setua, S. Kumari, N. Dan, A. Massey, B.B. Hafeez, M.M. Yallapu, Z.E. Stiles, A. Alabkaa, J. Yue, A. Ganju, S. Behrman, M. Jaggi, S.C. Chauhan, Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer. Biomaterials 208, 83–97 (2019)

    Article  CAS  Google Scholar 

  41. A. Granja, C. Nunes, C.T. Sousa, S. Reis, Folate receptor-mediated delivery of mitoxantrone-loaded solid lipid nanoparticles to breast cancer cells. Biomed. Pharmacother. 154, 113525 (2022)

    Article  CAS  Google Scholar 

  42. N.L. Chaves, I. Estrela-Lopis, J. Böttner, C.A. Lopes, B.C. Guido, A.R. de Sousa, S.N. Báo, Exploring cellular uptake of iron oxide nanoparticles associated with rhodium citrate in breast cancer cells. Int. J. Nanomed. 12, 5511–5523 (2017)

    Article  CAS  Google Scholar 

  43. M. Kaksonen, A. Roux, Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 19(5), 313–326 (2018)

    Article  CAS  Google Scholar 

  44. T. Kirchhausen, Clathrin. Annu. Rev. Biochem. 69(1), 699–727 (2000)

    Article  CAS  Google Scholar 

  45. A. Rauf, M. Imran, I.A. Khan, M. Ur-Rehman, S.A. Gilani, Z. Mehmood, M.S. Mubarak, Anticancer potential of quercetin: a comprehensive review. Phytother Res 32(11), 2109–2130 (2018)

    Article  CAS  Google Scholar 

  46. R. Vakili-Ghartavol, A.A. Momtazi-Borojeni, Z. Vakili-Ghartavol, H.T. Aiyelabegan, M.R. Jaafari, S.M. Rezayat, S. Arbabi Bidgoli, Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Artif. Cells Nanomed. Biotechnol. 48(1), 443–451 (2020)

    Article  CAS  Google Scholar 

  47. N. Fernandez-Bertolez, C. Costa, F. Brandao, J.A. Duarte, J.P. Teixeira, E. Pasaro, V. Valdiglesias, B. Laffon, Evaluation of cytotoxicity and genotoxicity induced by oleic acid-coated iron oxide nanoparticles in human astrocytes. Environ. Mol. Mutagen. 60(9), 816–829 (2019)

    Article  CAS  Google Scholar 

  48. J. Varshosaz, S. Taymouri, F. Hassanzadeh, S.H. Javanmard, M. Rostami, Folated synperonic-cholesteryl hemisuccinate polymeric micelles for the targeted delivery of docetaxel in melanoma. Biomed. Res. Int. 2015, 746093 (2015)

    Article  Google Scholar 

  49. U.V. Vo, C.K. Nguyen, V.C. Nguyen, T.V. Tran, B.Y.T. Thi, D.H. Nguyen, Gelatin-poly (ethylene glycol) methyl ether-functionalized porous Nanosilica for efficient doxorubicin delivery. J. Polym. Res. 26(1), 6 (2018)

    Article  Google Scholar 

Download references

Funding

This research is funded by the Vietnam Academy of Science and Technology (VAST) under grant number NVCC19.04/22–23.

Author information

Authors and Affiliations

Author notes

  1. Tien-Dung Nguyen-Dinh and Nhu-Thuan Nguyen-Phuoc have contributed equally to this work.

    Authors

    Contributions

    T-DN-D contributed to methodology, software, conceiving and designing the analysis, and data curation. N-TN-P contributed to methodology, conceiving and designing the analysis, data curation, and software. NTTL contributed to visualization, validation, collection the data, and performing the analysis. NHN contributed to conceiving and designing the analysis, contributing the data or analysis tools, and writing and original draft preparation. DHN contributed to investigation, conceptualization, supervision, and writing, reviewing, and editing of the manuscript.

    Corresponding author

    Correspondence to Dai Hai Nguyen.

    Ethics declarations

    Conflict of interest

    The authors declare that there is no conflict of interest regarding the publication of this paper.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Rights and permissions

    Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Nguyen-Dinh, TD., Nguyen-Phuoc, NT., Le, N.T.T. et al. A dual-stimuli-responsive delivery system for poorly water-soluble drug based on iron oxide nanoparticles. Journal of Materials Research 38, 4057–4067 (2023). https://doi.org/10.1557/s43578-023-01120-8

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1557/s43578-023-01120-8

    Keywords

    Navigation