Skip to main content
Log in

Structural, electrical, and leakage current characteristics of Sr(Sn,Se)O3 modified Bi0.5Na0.5TiO3 ferroelectric ceramics

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper reports the synthesis and detailed discussion of structural, electrical and leakage current characteristics of strontium stannate-selenite (Sr(Sn,Se)O3) modified bismuth sodium titanate (Bi0.5Na0.5TiO3) compounds with standard formula (1−2x) (Bi0.5Na0.5)TiO3 + x(SrSnO3) + x(SrSeO3) with x = 0, 0.05, 0.10, 0.15. The materials have been fabricated through a mixed oxide reaction route. The room temperature X-ray structural analysis indicates the formation of single-phase compounds with a rhombohedral crystal system. The SEM micrograph suggests the even distributions of grains with a very small number of voids. Detailed studies of frequency (1 kHz to 1 MHz) and temperature (25–500 °C) dependence of dielectric and other electrical parameters of the studied compounds were obtained using the programmable LCR meter. The ferroelectric behavior in the compounds is confirmed by the PE hysteresis loop. The JE characteristics of the materials have shown a very small amount of leakage current density with the presence of an Ohmic conduction mechanism.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this work are available within the article. Raw data that support the findings of the study are available from the corresponding author, upon reasonable request.

References

  1. K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Springer, New York, 1997), p. 61

    Google Scholar 

  2. E. Benes, M. Groschl, W. Burger, M. Schmld, Sens. Actuator A 48, 1–21 (1995)

    Article  CAS  Google Scholar 

  3. A. Banerjee, S. Bose, Chem. Mater. 16, 5610–5615 (2004)

    Article  CAS  Google Scholar 

  4. N. Chakrabarti, H.S. Maiti, Mater. Lett. 30, 169–173 (1997)

    Article  CAS  Google Scholar 

  5. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid State 2, 2651–2654 (1961)

    Google Scholar 

  6. J.A. Zvirgzds, P.P. Kapostins, J.V. Zvirgzde, T.V. Kruzina, Ferroelectrics 40, 75–77 (1982)

    Article  CAS  Google Scholar 

  7. C. Zhou, X. Liu, J. Mater. Sci. 19, 29–32 (2008)

    CAS  Google Scholar 

  8. G.O. Jones, P.A. Thomas, Acta Crystallogr. Sect. B 56, 426–430 (2000)

    Article  Google Scholar 

  9. Y. Xie, H. Hao, Z. Huang, S. Zhang, M. Cao, Z. Yao, H. Liu, J. Alloys Compd 884, 161031 (2021)

    Article  CAS  Google Scholar 

  10. S.H. Wu, P. Chen, J.W. Zhai, B. Shen, P. Li, F. Li, Ceram. Int. 44, 21289–21294 (2018)

    Article  CAS  Google Scholar 

  11. A. Herabut, A. Safari, J. Am. Ceram. Soc. 80, 2954–2958 (1997)

    Article  CAS  Google Scholar 

  12. W. Lu, S. Jiang, D. Zhou, S. Gong, Sens. Actuator A 80, 35–37 (2000)

    Article  CAS  Google Scholar 

  13. W.W. Coffeen, J. Am. Ceram. Soc. 36, 207–214 (1953)

    Article  CAS  Google Scholar 

  14. W.F. Zhang, J. Tang, J. Ye, Chem. Phys. Lett. 418, 174–178 (2006)

    Article  CAS  Google Scholar 

  15. C.P. Udawatte, M. Kakihana, M. Yoshimura, Solid State Ion. 128, 217–226 (2000)

    Article  CAS  Google Scholar 

  16. H. Mizoguchi, H.W. Eng, P.M.W. Ward, Inorg. Chem. 43, 1667–1680 (2004)

    Article  CAS  Google Scholar 

  17. N. Al-Dahoudi, H. Bisht, C. Gobbert, T. Krajewski, M.A. Aegerter, Thin Solid Films 392, 299–304 (2001)

    Article  CAS  Google Scholar 

  18. Z. Lu, J. Liu, J. Tang, Y. Li, Inorg. Chem. Commun. 7, 731–733 (2004)

    Article  CAS  Google Scholar 

  19. T. Truttmann, A. Prakash, J. Yue, T.E. Mates, B. Jalan, Appl. Phys. Lett. 115, 152103 (2019)

    Article  Google Scholar 

  20. T. Wang, A. Prakash, Y. Dong, T. Truttmann, A. Bucsek, R. James, D.D. Fong, J.W. Kim, P.J. Ryan, H. Zhou, T. Biro, B. Jalan, A.C.S. Appl, Mater. Interfaces 10, 43802–43808 (2018)

    Article  CAS  Google Scholar 

  21. H. Chen, N. Umezawa, Int. J. Photoenergy 2014, 1–3 (2014)

    Google Scholar 

  22. M.-L. Liang, Y.-X. Ma, C.-L. Hu, F. Kong, J.-G. Mao, Dalton Trans. 47, 1513–1519 (2018)

    Article  CAS  Google Scholar 

  23. L.T. Vlaev, M.M. Nikolova, G.G. Gospodinov, Monatshefte Chem. 136, 1553–1566 (2005)

    Article  CAS  Google Scholar 

  24. M. Wildner, G. Giester, N. Jb, Miner. Abh 184, 29–37 (2007)

    Article  CAS  Google Scholar 

  25. B. Deb, A. Ghosh, J. Appl. Phys. 112, 024102 (2012)

    Article  Google Scholar 

  26. Q. Chen, K. Su, Z. Zhao, Q. Ma, J. Non-Cryst, Solids 498, 448–454 (2018)

    CAS  Google Scholar 

  27. A. Bachvarova-Nedelcheva, R. Iordanova, St. Yordanov, Y. Dimitriev, J. Non-Cryst. Solids 355, 2027–2030 (2009)

    Article  CAS  Google Scholar 

  28. S. Yue, B. Wan, H. Li, Y. Liu, Q. Zhang, Int. J. Electrochem. Sci. 14, 2049–2062 (2019)

    Article  CAS  Google Scholar 

  29. W. Chatta, B. Lagoun, H. Lidjici, A. Chadli, A. Cheriet, H. Farh, H. Khemakhem, K. Salah, Solid State Phenom. 297, 165–172 (2019)

    Article  Google Scholar 

  30. B.B. Arya, R.N.P. Choudhary, J. Mater. Sci. 32, 11547–11567 (2021)

    CAS  Google Scholar 

  31. W. Zhang, Q. Feng, E. Hosono, D. Asakura, J. Miyawaki, Y. Harada, ACS Omega 5, 22800–22807 (2020)

    Article  CAS  Google Scholar 

  32. S. Ilyas, Heryanto, B. Abdullah, D. Tahir, Nano-Struct. Nano-Objects 20, 100396 (2019)

    Article  CAS  Google Scholar 

  33. E. Bouzaiene, J. Dhahri, E.K. Hlil, H.H. Hafedh Alrobei, J. Mater. Sci. 31, 18186–18197 (2020)

    CAS  Google Scholar 

  34. M. Faraday, Fourteenth Ser. 128, 189–199 (1837)

    Google Scholar 

  35. J.C. Anderson, Dielectrics (Chapman and Hall, London, 1964)

    Google Scholar 

  36. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, Asia, 1996), pp. 381–392

    Google Scholar 

  37. C.G. Koops, Phys. Rev. 83, 121–124 (1951)

    Article  CAS  Google Scholar 

  38. S. Nath, S.K. Barik, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 27, 8717–8724 (2016)

    Article  CAS  Google Scholar 

  39. B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin, J. Eur. Ceram. Soc. 22, 2115–2121 (2002)

    Article  CAS  Google Scholar 

  40. W. Li, H. Zeng, K. Zhao, J. Hao, J. Zhai, Ceram. Int. 40, 7947–7951 (2014)

    Article  CAS  Google Scholar 

  41. V.H. Schmidt, C.S. Tu, I.G. Siny, Proc. IEEE Int. Symp. Appl. Ferroelectr. 9, 45–48 (1994)

    Google Scholar 

  42. E. Bouzaiene, C. Rayssi, J. Dhahri, A. Afef, H. Belmabrouk, M.A. Albedah, J. Mater. Sci. 34, 285 (2023)

    CAS  Google Scholar 

  43. B.B. Arya, R.N.P. Choudhary, Mater. Sci. Eng. B 290, 116315 (2023)

    Article  CAS  Google Scholar 

  44. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Phys. Stat. Solidi. (a) 201, 588–595 (2004)

    Article  CAS  Google Scholar 

  45. A.R.V. Hipple, Dielectrics and Waves (Wiley Inc, NY, 1954)

    Google Scholar 

  46. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  47. Z. Raddaoui, R. Brahem, A. Bajahzar, H.M. Albetran, J. Dhahri, H. Belmabrouk, J. Mater. Sci. 32, 23333–23348 (2021)

    CAS  Google Scholar 

  48. A. Belkahla, K. Cherif, H. Belmabrouk, A. Bajahzar, J. Dhahri, E.K. Hlil, Solid State Commun. 294, 16–22 (2019)

    Article  CAS  Google Scholar 

  49. A.S. Nowick, B.S. Lim, J. Non-Cryst, Solids 172, 1389–1394 (1994)

    Google Scholar 

  50. H. Jain, C.H. Hsieh, J. Non-Cryst, Solids 172, 1408–1412 (1994)

    Google Scholar 

  51. A.K. Jonscher, J. Mater. Sci. 16, 2037–2060 (1981)

    Article  CAS  Google Scholar 

  52. R. Mizaras, M. Takashige, J. Banys, S. Kojima, J. Grigas, S.I. Hamazaki, J. Phys. Soc. Jpn. 66, 2881–2885 (1997)

    Article  CAS  Google Scholar 

  53. J. Suchanicz, Mater. Sci. Eng. B 55, 114–118 (1998)

    Article  Google Scholar 

  54. A. Sigov, Yu. Podgorny, K. Vorotilov, A. Vishnevskiy, Phase Transit. 86, 1141–1151 (2013)

    Article  CAS  Google Scholar 

  55. F.-C. Chiu, Adv. Mater. Sci. Eng. (2014). https://doi.org/10.1155/2014/578168

    Article  Google Scholar 

  56. S.T. Chang, J.Y.M. Lee, Appl. Phys. Lett. 80, 655–657 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincere thanks and gratitude to Mr. Nirakar Prasad Samantray, S‘O’A (Deemed to be University), for some experimental help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Arya.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 81 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, B.B., Choudhary, R.N.P. Structural, electrical, and leakage current characteristics of Sr(Sn,Se)O3 modified Bi0.5Na0.5TiO3 ferroelectric ceramics. Journal of Materials Research 38, 3776–3790 (2023). https://doi.org/10.1557/s43578-023-01099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01099-2

Keywords

Navigation