Skip to main content
Log in

Sol–gel synthesis and physical properties of Ni–Cu based spinel ferrites nanoparticles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

A Correction to this article was published on 13 October 2023

This article has been updated

Abstract

Sol–gel method has been used to synthesize copper substituted nickel ferrite CuxNi1−xFe2O4 nanoparticles with different concentration of copper as x = 0.0, 0.1, 0.2, 0.3, and 0.4. The crystallinity was confirmed through the powder X-ray diffraction method with single phase face-centred cubic structure for all CuxNi1−xFe2O4 samples having preferred orientation along (311) plane. The crystallite size was estimated through Scherrer’s formula and observed to be in the range from 21 to 38 nm. The microstructure of ferrite nanoparticles was characterized by the scanning electron microscopy. The existence of functional groups and copper substitution in CuxNi1−xFe2O4 nanoparticles was investigated by Fourier transform infrared spectroscopy. Impedance analyser was employed to investigate the dielectric properties of copper substituted nickel ferrites. The high value of dielectric constant at low frequency and low impedance at high frequency would make these nanoparticles a potential candidate for microwave device applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

All necessary data is available in the manuscript in the form of figures and tables. There is no supplementary data available.

Change history

References

  1. H. El-Sayed, Effect of induced magnetic anisotropy on the hysteresis parameters of Co-ferrite prepared from nano-sized particles. J. Alloys Compd. 474(1–2), 561 (2009)

    Article  CAS  Google Scholar 

  2. S. Thakur, S. Katyal, A. Gupta, V. Reddy, M. Singh, Room temperature ferromagnetic ordering in indium substituted nano-nickel-zinc ferrite. J. Appl. Phys. 105(7), 07A521 (2009)

    Article  Google Scholar 

  3. P. Mathur, A. Thakur, M. Singh, Effect of nanoparticles on the magnetic properties of Mn–Zn soft ferrite. J. Magn. Magn. Mater. 320(7), 1364 (2008)

    Article  CAS  Google Scholar 

  4. A. Dias, R.L. Moreira, N.D. Mohallem, A.C. Persiano, Microstructural dependence of the magnetic properties of sintered NiZn ferrites from hydrothermal powders. J. Magn. Magn. Mater. 172(1–2), L9 (1997)

    Article  CAS  Google Scholar 

  5. K. Roumaih, The transport properties of the mixed Ni–Cu ferrite. J. Alloys Compd. 465(1–2), 291 (2008)

    Article  CAS  Google Scholar 

  6. F.S. Tehrani, V. Daadmehr, A. Rezakhani, R.H. Akbarnejad, S. Gholipour, Structural, magnetic, and optical properties of zinc- and copper-substituted nickel ferrite nanocrystals. J. Supercond. Nov. Magn. 25(7), 2443 (2012)

    Article  Google Scholar 

  7. H. Dawoud, L. A-Ouda, S. Shaat, Investigation of the effect of Zn ions concentration on DC conductivity and Curie temperature of Ni-spinel ferrite. Am. J. Mater. Sci. Appl. 4(2), 11 (2016)

    Google Scholar 

  8. R. Sharma, P. Thakur, M. Kumar, P. Sharma, V. Sharma, Nanomaterials for high frequency device and photocatalytic applications: Mg–Zn–Ni ferrites. J. Alloys Compd. 746, 532 (2018)

    Article  CAS  Google Scholar 

  9. M. Amiri, M. Salavati-Niasari, A. Akbari, Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci. (2019). https://doi.org/10.1016/j.cis.2019.01.003

    Article  Google Scholar 

  10. R. Lebourgeois, C. Coillot, Mn–Zn ferrites for magnetic sensor in space applications. J. Appl. Phys. 103(7), 07E510 (2008)

    Article  Google Scholar 

  11. C. Sujatha, K.V. Reddy, K.S. Babu, A.R.C. Reddy, M.B. Suresh, K. Rao, Effect of co substitution of Mg and Zn on electromagnetic properties of NiCuZn ferrites. J. Phys. Chem. Solids 74(7), 917 (2013)

    Article  CAS  Google Scholar 

  12. B. Madhu, S. Ashwini, B. Shruthi, B. Divyashree, A. Manjunath, H. Jayanna, Structural, dielectric and electromagnetic shielding properties of Ni–Cu nanoferrite/PVP composites. Mater. Sci. Eng. B 186, 1 (2014)

    Article  CAS  Google Scholar 

  13. S. Krupicka, P. Novak, Oxide Spinels Ferroelectric Materials, vol. 3 (North-Holland, Amsterdam, 1982)

    Google Scholar 

  14. S. Patil, S. Otari, V. Mahajan, M. Patil, A. Patil, M. Soudagar, B. Patil, S. Sawant, Structural, IR and magnetisation studies on La3+ substituted copper ferrite. Solid State Commun. 78(1), 39 (1991)

    Article  CAS  Google Scholar 

  15. C. Upadhyay, D. Mishra, H. Verma, S. Anand, R. Das, Effect of preparation conditions on formation of nanophase Ni–Zn ferrites through hydrothermal technique. J. Magn. Magn. Mater. 260(1–2), 188 (2003)

    Article  CAS  Google Scholar 

  16. Z.Ž Lazarević, Č Jovalekić, A. Milutinović, D. Sekulić, V.N. Ivanovski, A. Rečnik, B. Cekić, N.Ž Romčević, Nanodimensional spinel NiFe2O4 and ZnFe2O4 ferrites prepared by soft mechanochemical synthesis. J. Appl. Phys. 113(18), 187221 (2013)

    Article  Google Scholar 

  17. L.B. de Mello, L.C. Varanda, F.A. Sigoli, I.O. Mazali, Co-precipitation synthesis of (Zn–Mn)-co-doped magnetite nanoparticles and their application in magnetic hyperthermia. J. Alloys Compd. 779, 698 (2019)

    Article  Google Scholar 

  18. T. Tatarchuk, I. Mironyuk, V. Kotsyubynsky, A. Shyichuk, M. Myslin, V. Boychuk, Structure, morphology and adsorption properties of titania shell immobilized onto cobalt ferrite nanoparticle core. J. Mol. Liq. 297, 111757 (2020)

    Article  CAS  Google Scholar 

  19. S.B. Somvanshi, M.V. Khedkar, P.B. Kharat, K. Jadhav, Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis. Ceram. Int. 46(7), 8640 (2020)

    Article  CAS  Google Scholar 

  20. M.A. Yousuf, S. Jabeen, M.N. Shahi, M.A. Khan, I. Shakir, M.F. Warsi, Magnetic and electrical properties of yttrium substituted manganese ferrite nanoparticles prepared via micro-emulsion route. Results Phys. 16, 102973 (2020)

    Article  Google Scholar 

  21. J.D. Wright, N.A. Sommerdijk, Sol–Gel Materials: Chemistry and Applications (CRC Press, Boca Raton, 2000)

    Google Scholar 

  22. M.P. Reddy, R. Shakoor, A. Mohamed, Auto combustion synthesis, microstructural and magnetic characteristics of nickel ferrite nanoparticles. Indian J. Sci. Technol. 10(13), 1 (2017)

    Article  Google Scholar 

  23. M. Kurian, D.S. Nair, Effect of preparation conditions on nickel zinc ferrite nanoparticles: a comparison between sol–gel auto combustion and co-precipitation methods. J. Saudi Chem. Soc. 20, S517 (2016)

    Article  CAS  Google Scholar 

  24. O. Kamigaito, What can be improved by nanometer composites? J. Jpn. Soc. Powder Powder Metall. 38(3), 315 (1991)

    Article  CAS  Google Scholar 

  25. F. Song, X. Shen, M. Liu, J. Xiang, Preparation and magnetic properties of SrFe12O19/Ni0.5Zn0.5Fe2O4 nanocomposite ferrite microfibers via sol–gel process. Mater. Chem. Phys. 126(3), 791 (2011)

    Article  CAS  Google Scholar 

  26. K.V. Babu, G.S. Kumar, G. Satyanarayana, B. Sailaja, C.C.S. Lakshmi, Microstructural and magnetic properties of Ni1xCuxFe2O4 (x = 0.05, 0.1 and 0.15) nano-crystalline ferrites. J. Sci.: Adv. Mater. Devices 3(2), 236 (2018)

    Google Scholar 

  27. S.B. Khan, S. Irfan, S.-L. Lee, Influence of Zn2+ doping on Ni-based nanoferrites; (Ni1xZnxFe2O4). Nanomaterials 9(7), 1024 (2019)

    Article  CAS  Google Scholar 

  28. R. Lahouli, J. Massoudi, M. Smari, H. Rahmouni, K. Khirouni, E. Dhahri, L. Bessais, Investigation of annealing effects on the physical properties of Ni0.6Zn0.4Fe1.5Al0.5O4 ferrite. RSC Adv. 9(35), 19949 (2019)

    Article  CAS  Google Scholar 

  29. I. Toqeer, M. Naz, Y. Khan, M. Azam, M. Alkanhal, R. Meer, Morphological and magnetic response of copper-substituted nickel ferrite nanoparticles. Philos. Mag. Lett. 99(2), 67 (2019)

    Article  CAS  Google Scholar 

  30. S. Singhal, S. Jauhar, J. Singh, K. Chandra, S. Bansal, Investigation of structural, magnetic, electrical and optical properties of chromium substituted cobalt ferrites (CoCrxFe2xO4, 0 ≤ x ≤ 1) synthesized using sol gel auto combustion method. J. Mol. Struct. 1012, 182 (2012)

    Article  CAS  Google Scholar 

  31. A. Yadav, D. Varshney, Structural and dielectric properties of copper-substituted Mg–Zn spinel ferrites. J. Supercond. Nov. Magn. 30, 1297 (2017)

    Article  CAS  Google Scholar 

  32. K. Naz, J.K. Khan, M. Khalid, M.S. Akhtar, Z.A. Gilani, G.A. Mersal, M.M. Ibrahim, A. Muhammad, M. Ashiq, Structural, dielectric, impedance and electric modulus analysis of Ni substituted copper spinel ferrites nanoparticles for microwave device applications. Mater. Chem. Phys. 285, 126091 (2022)

    Article  CAS  Google Scholar 

  33. K.M. Batoo, M.S. Ansari, Low temperature-fired Ni–Cu–Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications. Nanoscale Res. Lett. 7(1), 112 (2012)

    Article  Google Scholar 

  34. D. Paramesh, K.V. Kumar, P.V. Reddy, Influence of nickel addition on structural and magnetic properties of aluminium substituted Ni–Zn ferrite nanoparticles. Process. Appl. Ceram. 10(3), 161 (2016)

    Article  CAS  Google Scholar 

  35. E.S. Lima, L.S. Costa, G.R. Sampaio, E.S. Oliveira, E.B. Silva, H.O. Nascimento, R.F. Nascimento, K.O. Moura, M. Bastos-Neto, A.R. Loiola, Zinc ferrite nanoparticles via coprecipitation modified method: glycerol as structure directing and stabilizing agent. J. Braz. Chem. Soc. 30(4), 882 (2019)

    CAS  Google Scholar 

  36. A. Ghoneim, T. Meaz, H. Aboelkhir, Structural, thermal and ferrimagnetic studies of the as-fabricated La3+-doped Co-nano-spinels. J. Phys.: Conf. Ser. 1253, 012020 (2019)

    CAS  Google Scholar 

  37. M. Zaid, D. Hemeda, S.A. Kader, G. Farag, Structural, electrical and infrared studies of Ni0.7Cd0.3SmxFe2xO4 ferrite. Turk. J. Phys. 31(1), 41–50 (2007)

    Google Scholar 

  38. S.E. Shirsath, M.L. Mane, Y. Yasukawa, X. Liu, A. Morisako, Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho3+–Mn2+–Fe3+–O2− ferromagnetic nanoparticles. Phys. Chem. Chem. Phys. 16(6), 2347 (2014)

    Article  CAS  Google Scholar 

  39. N. Channa, M. Khalid, A.D. Chandio, G. Mustafa, M.S. Akhtar, J.K. Khan, J. Ahmad, K.A. Kalhoro, Nickel-substituted manganese spinel ferrite nanoparticles for high-frequency applications. J. Mater. Sci.: Mater. Electron. 31, 1661 (2020)

    CAS  Google Scholar 

  40. R. Gimenes, M.R. Baldissera, M. Da Silva, C. Da Silveira, D. Soares, L.A. Perazolli, M. Da Silva, M. Zaghete, Structural and magnetic characterization of MnxZn1xFe2O4 (x = 0.2; 0.35; 0.65; 0.8; 1.0) ferrites obtained by the citrate precursor method. Ceram. Int. 38(1), 741 (2012)

    Article  CAS  Google Scholar 

  41. A. Volkov, A. Prokhorov, Broadband dielectric spectroscopy of solids. Radiophys. Quantum Electron. 46(8–9), 657 (2003)

    Article  Google Scholar 

  42. T.K. Bromho, K. Ibrahim, H. Kabir, M.M. Rahman, K. Hasan, T. Ferdous, H. Taha, M. Altarawneh, Z.-T. Jiang, Understanding the impacts of Al3+-substitutions on the enhancement of magnetic, dielectric and electrical behaviors of ceramic processed nickel–zinc mixed ferrites: FTIR assisted studies. Mater. Res. Bull. 97, 444 (2018)

    Article  CAS  Google Scholar 

  43. K. Wagner, Dissipation of energy under AC. Ann. Phys. 40, 817 (1913)

    Article  Google Scholar 

  44. K.W. Wagner, Zur theorie der unvollkommenen dielektrika. Ann. Phys. 345(5), 817 (1913)

    Article  Google Scholar 

  45. A.A. Hossain, T. Biswas, T. Yanagida, H. Tanaka, H. Tabata, T. Kawai, Investigation of structural and magnetic properties of polycrystalline Ni0.50Zn0.50−xMgxFe2O4 spinel ferrites. Mater. Chem. Phys. 120(2–3), 461 (2010)

    Article  Google Scholar 

  46. F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer Science & Business Media, Berlin, 2002)

    Google Scholar 

  47. J. Li, H. Yuan, G. Li, Y. Liu, J. Leng, Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles. J. Magn. Magn. Mater. 322(21), 3396 (2010)

    Article  CAS  Google Scholar 

  48. I. Gul, E. Pervaiz, Comparative study of NiFe2xAlxO4 ferrite nanoparticles synthesized by chemical co-precipitation and sol–gel combustion techniques. Mater. Res. Bull. 47(6), 1353 (2012)

    Article  CAS  Google Scholar 

  49. M. Hashim, S. Kumar, S. Ali, B. Koo, H. Chung, R. Kumar, Structural, magnetic and electrical properties of Al3+ substituted Ni–Zn ferrite nanoparticles. J. Alloys Compd. 511(1), 107 (2012)

    Article  CAS  Google Scholar 

  50. S. Li, W. Yang, M. Chen, J. Gao, J. Kang, Y. Qi, Preparation of PbO nanoparticles by microwave irradiation and their application to Pb(II)-selective electrode based on cellulose acetate. Mater. Chem. Phys. 90(2–3), 262 (2005)

    Article  CAS  Google Scholar 

  51. N. Velinov, T. Petrova, R. Ivanova, T. Tsoncheva, D. Kovacheva, I. Mitov, Synthesis and characterization of copper–nickel ferrite catalysts for ethyl acetate oxidation. Hyperfine Interact. 241(1), 1 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by King Khalid University through a Grant (KKU/RCAMS/22) under the Research Centre for Advanced Materials Science (RCAMS) at King Khalid University, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Khalid or Muhammad Saeed Akhtar.

Ethics declarations

Competing interests

On behalf of all the authors of manuscript entitled “Sol–Gel Synthesis and Physical Properties of Ni–Cu based Spinel Ferrites Nanoparticles”, I would like to declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalhoro, K.A., Khalid, M., Naz, K. et al. Sol–gel synthesis and physical properties of Ni–Cu based spinel ferrites nanoparticles. Journal of Materials Research 38, 3764–3775 (2023). https://doi.org/10.1557/s43578-023-01098-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01098-3

Keywords

Navigation