Skip to main content
Log in

A mesh network of MnO nanowires and CNTs reinforced by molecularly imprinted structures for the selective detection of para-nitrophenol

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Advanced material architecture can be used to develop tailor-made interfaces for innovative and selective sensor platforms. An intricate mesh structure of manganese oxide nanowires and carbon nanotubes was synthesized. Further, the mesh was strengthened by a molecularly imprinted network to generate template cavities and impart selective recognition. Termed as MIP@MnO:CNT, this mesh structure was used as the receptor interface for microarray transducers. The unique hybrid composition and morphology enhanced binding performance for detection of para-nitrophenol (P-NP), an important pollutant. The sensor showed exceptional sensitivity towards P-NP monitoring with a limit of detection of 3 nM (S/N = 3). Benefitted from the imprinting strategy, the designed sensor exhibited 85–99% selectivity when compared to other aromatic compounds. Moreover, the designed interface was able to detect P-NP in water samples. As demonstrated in this study, other chemical compositions and morphology of multi-dimensional materials can be crafted for the improved and specific detection of analytes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study. But Data can be made available on request.

References

  1. N. Iqbal, A. Afzal, I. Khan, M.S. Khan, A. Qurashi, Molybdenum impregnated g-C3N4 nanotubes as potentially active photocatalyst for renewable energy applications. Sci. Rep. 11(1), 16886 (2021)

    CAS  Google Scholar 

  2. S. Younis, A. Taj, A. Mujahid, A.A. Yazdi, J. Xu, H.N. Bhatti, W.S. Khan, S.Z. Bajwa, Ultrathin 2D bismuth oxychloride nanosheets as novel catalytic interfaces for detection of biomolecules. J. Mater. Sci. Eng. B 278, 115651 (2022)

    CAS  Google Scholar 

  3. X. Ge, R. Wong, A. Anisa, S. Ma, Recent development of metal–organic framework nanocomposites for biomedical applications. Biomaterials 281, 121322 (2022)

    CAS  Google Scholar 

  4. M.A. Tahir, S.Z. Bajwa, S. Mansoor, R.W. Briddon, W.S. Khan, B.E. Scheffler, I. Amin, Evaluation of carbon nanotube based copper nanoparticle composite for the efficient detection of agroviruses. J. Hazard. Mater. 346, 27 (2018)

    CAS  Google Scholar 

  5. J. Guo, Z. Chen, X. Xu, X. Li, H. Liu, S. Xi, W. Abdul, Q. Wu, P. Zhang, B.B. Xu, Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv. Compos. Hybrid Mater. 5(3), 1769 (2022)

    CAS  Google Scholar 

  6. K. Ramachandran, V. Boopalan, J.C. Bear, R. Subramani, Multi-walled carbon nanotubes (MWCNTs)-reinforced ceramic nanocomposites for aerospace applications: a review. J. Mater. Sci. 57(6), 3923 (2022)

    CAS  Google Scholar 

  7. S. Pan, T. Wang, K. Jin, X. Cai, Understanding and designing metal matrix nanocomposites with high electrical conductivity: a review. J. Mater. Sci. 57(12), 6487 (2022)

    CAS  Google Scholar 

  8. B. Tehseen, A. Rehman, M. Rahmat, H.N. Bhatti, A. Wu, F.K. Butt, G. Naz, W.S. Khan, S.Z. Bajwa, Solution growth of 3D MnO2 mesh comprising 1D nanofibres as a novel sensor for selective and sensitive detection of biomolecules. Biosens. Bioelectron. 117, 852 (2018)

    CAS  Google Scholar 

  9. X. Zhou, H. Han, Y. Wang, C. Zhang, H. Lv, Z. Lou, Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption. J. Mater. Sci. Technol. 121, 199 (2022)

    CAS  Google Scholar 

  10. N. Gupta, J.M. Alred, E.S. Penev, B.I. Yakobson, Universal strength scaling in carbon nanotube bundles with frictional load transfer. ACS Nano 15(1), 1342 (2021)

    CAS  Google Scholar 

  11. K. Shehzad, Y. Xu, C. Gao, H. Li, Z.-M. Dang, T. Hasan, J. Luo, X. Duan, Flexible dielectric nanocomposites with ultrawide zero-temperature coefficient windows for electrical energy storage and conversion under extreme conditions. ACS Appl. Mater. Interfaces 9(8), 7591 (2017)

    CAS  Google Scholar 

  12. T. Hussain, S. Jabeen, K. Shehzad, A. Mujahid, M.N. Ahmad, Z.H. Farooqi, M.H. Raza, Polyaniline/silver decorated-MWCNT composites with enhanced electrical and thermal properties. Polym. Compos. 39(S3), E1346 (2018)

    CAS  Google Scholar 

  13. K. Shehzad, T. Hussain, A.T. Shah, A. Mujahid, M.N. Ahmad, R.U.R. Sagar, T. Anwar, S. Nasir, A. Ali, Effect of the carbon nanotube size dispersity on the electrical properties and pressure sensing of the polymer composites. J. Mater. Sci. 51, 11014 (2016)

    CAS  Google Scholar 

  14. B. Shin, S. Mondal, M. Lee, S. Kim, Y.-I. Huh, C. Nah, Flexible thermoplastic polyurethane–carbon nanotube composites for electromagnetic interference shielding and thermal management. J. Chem. Eng. 418, 129282 (2021)

    CAS  Google Scholar 

  15. S. Piletsky, F. Canfarotta, A. Poma, A.M. Bossi, S. Piletsky, Molecularly imprinted polymers for cell recognition. Trends Biotechnol. 38(4), 368 (2020)

    CAS  Google Scholar 

  16. S.Z. Bajwa, R. Dumler, P.A. Lieberzeit, Molecularly imprinted polymers for conductance sensing of Cu2+ in aqueous solutions. Sens. Actuators B 192, 522–528 (2014)

    CAS  Google Scholar 

  17. S. Haghdoust, U. Arshad, A. Mujahid, L. Schranzhofer, P.A. Lieberzeit, Development of a MIP-based QCM sensor for selective detection of penicillins in aqueous media. Chemosensors 9(12), 362 (2021)

    CAS  Google Scholar 

  18. J. Luo, H. Tan, B. Yang, D. Chen, J. Fei, A mesoporous silica-based probe with a molecularly imprinted polymer recognition and Mn:ZnS QDs@ rhodamine B ratiometric fluorescence sensing strategy for the analysis of 4-nitrophenol. Anal. Methods 14(39), 3881 (2022)

    CAS  Google Scholar 

  19. K. Asadpour-Zeynali, P. Najafi-Marandi, Bismuth modified disposable pencil-lead electrode for simultaneous determination of 2-nitrophenol and 4-nitrophenol by net analyte signal standard addition method. Electroanalysis 23(9), 2241 (2011)

    CAS  Google Scholar 

  20. X. Xu, Z. Liu, X. Zhang, S. Duan, S. Xu, C. Zhou, β-Cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: simultaneous determination of nitrophenol isomers. Electrochim. Acta 58, 142 (2011)

    CAS  Google Scholar 

  21. S. Yeasmin, B. Wu, Y. Liu, A. Ullah, L.J. Cheng, Nano gold-doped molecularly imprinted electrochemical sensor for rapid and ultrasensitive cortisol detection. Biosens. Bioelectron. 206, 114142 (2022)

    CAS  Google Scholar 

  22. N. Wang, G. Lv, L. He, X. Sun, New insight into photodegradation mechanisms, kinetics and health effects of p-nitrophenol by ozonation in polluted water. J. Hazard. Mater. 403, 123805 (2021)

    CAS  Google Scholar 

  23. S.P. Sam, H.T. Tan, K. Sudesh, R. Adnan, A.S.Y. Ting, S.L. Ng, Phenol and p-nitrophenol biodegradations by acclimated activated sludge: influence of operational conditions on biodegradation kinetics and responding microbial communities. J. Environ. Chem. Eng. 9(4), 105420 (2021)

    CAS  Google Scholar 

  24. D. Erika, N. Nurdini, I. Mulyani, G.T. Kadja, Amine-functionalized ZSM-5-supported gold nanoparticles as a highly efficient catalyst for the reduction of p-nitrophenol. Inorg. Chem. Commun. 147, 110253 (2023)

    CAS  Google Scholar 

  25. J. Bai, L. Guo, J.C. Ndamanisha, B. Qi, Electrochemical properties and simultaneous determination of dihydroxybenzene isomers at ordered mesoporous carbon-modified electrode. J. Appl. Electrochem. 39, 2497 (2009)

    CAS  Google Scholar 

  26. T. Zhang, Q. Lang, D. Yang, L. Li, L. Zeng, C. Zheng, T. Li, M. Wei, A. Liu, Simultaneous voltammetric determination of nitrophenol isomers at ordered mesoporous carbon modified electrode. Electrochim. Acta 106, 127 (2013)

    CAS  Google Scholar 

  27. Q. He, Y. Tian, Y. Wu, J. Liu, G. Li, P. Deng, D. Chen, Facile and ultrasensitive determination of 4-nitrophenol based on acetylene black paste and graphene hybrid electrode. Nanomaterials (Basel Switz.) 9(3), 429 (2019)

    CAS  Google Scholar 

  28. Q. Wang, R. Li, Y. Zhao, T. Zhe, T. Bu, Y. Liu, X. Sun, H. Hu, M. Zhang, X. Zheng, L. Wang, Surface morphology-controllable magnetic covalent organic frameworks: a novel electrocatalyst for simultaneously high-performance detection of p-nitrophenol and o-nitrophenol. Talanta 219, 121255 (2020)

    CAS  Google Scholar 

  29. T. Liu, N. Chen, Y. Deng, F. Chen, C. Feng, Degradation of p-nitrophenol by nano-pyrite catalyzed Fenton reaction with enhanced peroxide utilization. RSC Adv. 10(27), 15901 (2020)

    CAS  Google Scholar 

  30. X. Luo, J. Yang, Water pollution detection based on hypothesis testing in sensor networks. J. Sens. 2017, 3829894 (2017)

    Google Scholar 

  31. E. Delnavaz, M. Amjadi, An ultrasensitive chemiluminescence assay for 4-nitrophenol by using luminol-NaIO(4) reaction catalyzed by copper, nitrogen co-doped carbon dots. Spectrochim. Acta A 241, 118608 (2020)

    CAS  Google Scholar 

  32. N.H. Al-Shaalan, I. Ali, Z.A. ALOthman, L. Hamad Al-Wahaibi, H. Alabdulmonem, Capillary electrophoresis and CNTs solid-phase extraction of p-nitro-phenol in water with modeling study. Sep. Sci. Technol. 56(6), 1095 (2021)

    CAS  Google Scholar 

  33. J. Wang, C. Qiu, X. Mu, H. Pang, X. Chen, D. Liu, Ultrasensitive SERS detection of rhodamine 6G and p-nitrophenol based on electrochemically roughened nano-Au film. Talanta 210, 120631 (2020)

    CAS  Google Scholar 

  34. J. Liu, H. Chen, Z. Lin, J.-M. Lin, Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Anal. Chem. 82(17), 7380 (2010)

    CAS  Google Scholar 

  35. Q.X. Li, M.S. Zhao, S.J. Gee, M.J. Kurth, J.N. Seiber, B.D. Hammock, Development of enzyme-linked immunosorbent assays for 4-nitrophenol and substituted 4-nitrophenols. J. Agric. Food Chem. 39(9), 1685 (1991)

    CAS  Google Scholar 

  36. K. Cao, C. Si, H. Zhang, J. Hu, D. Zheng, An electrochemical sensor based on a glassy carbon electrode modified with optimized Cu–Fe3O4 nanocomposite for 4-nitrophenol detection. J. Mater. Sci. Mater. Electron. 33(5), 2386 (2022)

    CAS  Google Scholar 

  37. M.J. Bakhtiyar, Z.A. Raza, M. Aslam, S.Z. Bajwa, M. Shoaib Ur Rehman, S. Rafiq, Cupric oxide nanoparticles incorporated poly(hydroxybutyrate) nanocomposite for potential biosensing application. Int. J. Biol. Macromol. 213, 1018 (2022)

    CAS  Google Scholar 

  38. A. Taj, H. Maqsood, R. Zia, A. Mujahid, A. Afzal, Z. Tariq, F.K. Butt, W.S. Khan, S.Z. Bajwa, Solution grown multilayered zinc vanadium oxide nanosheets as a new material to bind glutathione. J. Mater. Res. Technol. 17, 1777 (2022)

    CAS  Google Scholar 

  39. W. Du, F. Han, M. Zhang, C. Qian, X. Yang, Temperature-dependent synthesis of MOF-derived Co@ N-doped carbon nanotube nanocomposites toward accelerated reduction of 4-nitrophenol. Compos. Commun. 25, 100718 (2021)

    Google Scholar 

  40. V. Anbumannan, M. Dinesh, R.R. Kumar, K. Suresh, Hierarchical α-MnO2 wrapped MWCNTs sensor for low level detection of p-nitrophenol in water. Ceram. Int. 45(17), 23097 (2019)

    CAS  Google Scholar 

  41. D.S. Rana, S. Kalia, R. Kumar, N. Thakur, R.K. Singh, D. Singh, Two-dimensional layered reduced graphene oxide–tungsten disulphide nanocomposite for highly sensitive and selective determination of para nitrophenol. Environ. Nanotechnol. Monit. Manag. 18, 100724 (2022)

    CAS  Google Scholar 

  42. R.A. Dar, G.A. Naikoo, A.K. Srivastava, I.U. Hassan, S.P. Karna, L. Giri, A.M. Shaikh, M. Rezakazemi, W. Ahmed, Performance of graphene–zinc oxide nanocomposite coated-glassy carbon electrode in the sensitive determination of para-nitrophenol. Sci. Rep. 12(1), 1 (2022)

    Google Scholar 

  43. R. El-Shaheny, S. Yoshida, T. Fuchigami, Graphene quantum dots as a nanoprobe for analysis of o- and p-nitrophenols in environmental water adopting conventional fluorometry and smartphone image processing-assisted paper-based analytical device. In-depth study of sensing mechanisms. Microchem. J. 158, 105241 (2020)

    CAS  Google Scholar 

  44. Y. Li, Y. Ma, E. Lichtfouse, J. Song, R. Gong, J. Zhang, S. Wang, L. Xiao, In situ electrochemical synthesis of graphene–poly(arginine) composite for p-nitrophenol monitoring. J. Hazard. Mater. 421, 126718 (2022)

    CAS  Google Scholar 

  45. A. Rafiq, A. Taj, S. Haider, M.A. Tahir, R. Zia, D. Moschou, M.J. Iqbal, W.S. Khan, S. Mansoor, S.Z. Bajwa, Biologically prepared copper–graphene nanohybrid as the interface of microchips for sensitive detection of crop viruses. J. Mater. Res. Technol. 12, 727 (2021)

    CAS  Google Scholar 

  46. X. Guo, Y. Huang, W. Yu, X. Yu, X. Han, H. Zhai, Multi-walled carbon nanotubes modified with iron oxide and manganese dioxide (MWCNTs-Fe3O4–MnO2) as a novel adsorbent for the determination of BPA. Microchem. J. 157, 104867 (2020)

    CAS  Google Scholar 

  47. X. Wang, M. Li, S. Yang, X. Bai, J. Shan, Self-assembled Ti3C2TX MXene/graphene composite for the electrochemical reduction and detection of p-nitrophenol. Microchem. J. 179, 107473 (2022)

    CAS  Google Scholar 

  48. K. Qin, D. Zhang, Y. Ding, X. Zheng, Y. Xiang, J. Hua, Q. Zhang, X. Ji, B. Li, Y. Wei, Applications of hydrothermal synthesis of Escherichia coli derived carbon dots in in vitro and in vivo imaging and p-nitrophenol detection. Analyst 145(1), 177 (2019)

    Google Scholar 

  49. S. Zhang, D. Zhang, Y. Ding, J. Hua, B. Tang, X. Ji, Q. Zhang, Y. Wei, K. Qin, B. Li, Bacteria-derived fluorescent carbon dots for highly selective detection of p-nitrophenol and bioimaging. Analyst 144(18), 5497 (2019)

    CAS  Google Scholar 

  50. S. Hameed, A. Munawar, W.S. Khan, A. Mujahid, A. Ihsan, A. Rehman, I. Ahmed, S.Z. Bajwa, Assessing manganese nanostructures based carbon nanotubes composite for the highly sensitive determination of vitamin C in pharmaceutical formulation. Biosens. Bioelectron. 89(Pt 2), 822 (2017)

    CAS  Google Scholar 

  51. A. Shaheen, A. Taj, P.A. Liberzeit, A. Mujahid, S. Hameed, H. Yu, A. Mahmood, T.J. Webster, M.H. Rashid, W.S. Khan, S.Z. Bajwa, Design of heterostructured hybrids comprising ultrathin 2D bismuth tungstate nanosheets reinforced by chloramphenicol imprinted polymers used as biomimetic interfaces for mass-sensitive detection. Colloids Surf. B 188, 110775 (2020)

    CAS  Google Scholar 

Download references

Acknowledgments

Ms. Tehseen is thankful to the Higher Education Commission (HEC) Pakistan for providing a Fellowship (IRSIP No. 1-8/HEC/HRD/2017/8207).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asma Rehman or Sadia Z. Bajwa.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tehseen, B., Rehman, A., Schirhagl, R. et al. A mesh network of MnO nanowires and CNTs reinforced by molecularly imprinted structures for the selective detection of para-nitrophenol. Journal of Materials Research 38, 3560–3571 (2023). https://doi.org/10.1557/s43578-023-01080-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01080-z

Keywords

Navigation