Skip to main content
Log in

Photocatalytic behavior of cauliflower-like mesoporous ZnS:M (M=Ni, Mn) nanostructures under LED illumination; newly developed synthesis method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An ultrasound-assisted approach has been used for the synthesis of ZnS:M (M=Ni, Mn) nanostructures with cyclohexane as a non-solvent medium. XRD patterns proved that the obtained ZnS sample has cubic sphalerite phase, while both sulfide phase of nickel present in the samples also have a similar cubic lattice with close lattice parameter and the same space group. Hence, nickel would be able to act both as dopant and upon further increase, grow on each other as distinct phases. Using the non-solvent regime, it is possible to obtain homogenous interfaces which in turn would facilitate charge transfer and enhance the photocatalytic activity. Optical properties of the samples under study are discussed and they have been put to test as visible light photocatalysts for pollutant removal from aqueous media, ZnS:Ni (0.1) proved to be an active and robust catalyst for the photodegradation of malachite green under LED illumination.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

All necessary data are included in the main body of the manuscript.

References

  1. H. Xu, B.W. Zeiger, K.S. Suslick, Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 42, 2555–2567 (2013)

    Article  CAS  Google Scholar 

  2. A. Gedanken, Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem. 11, 47–55 (2004)

    Article  CAS  Google Scholar 

  3. K.S. Suslick, S.-B. Choe, A.A. Cichowlas, M.W. Grinstaff, Sonochemical synthesis of amorphous iron. Nature 353, 414–416 (1991)

    Article  CAS  Google Scholar 

  4. B.P. Barber, S.J. Putterman, Observation of synchronous picosecond sonoluminescence. Nature 352, 318–320 (1991)

    Article  Google Scholar 

  5. K.S. Suslick, D.A. Hammerton, R.E. Cline, Sonochemical hot spot. J. Am. Chem. Soc. 108, 5641–5642 (1986)

    Article  CAS  Google Scholar 

  6. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 1–21 (2000)

    Article  CAS  Google Scholar 

  7. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: from synthesis to applications. Prog. Mater Sci. 56, 175–287 (2011)

    Article  CAS  Google Scholar 

  8. Z. Ye, L. Kong, F. Chen, Z. Chen, Y. Lin, C. Liu, A comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes. Optik 164, 345–354 (2018)

    Article  CAS  Google Scholar 

  9. M. Bredol, J. Merikhi, ZnS precipitation: morphology control. J. Mater. Sci. 33, 471–476 (1998)

    Article  CAS  Google Scholar 

  10. G.-J. Lee, J.J. Wu, Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—A review. Powder Technol. 318, 8–22 (2017)

    Article  CAS  Google Scholar 

  11. F. Chen, Y. Cao, D. Jia, A facile route for the synthesis of ZnS rods with excellent photocatalytic activity. Chem. Eng. J. 234, 223–231 (2013)

    Article  CAS  Google Scholar 

  12. I. Parvaneh, S. Samira, N. Mohsen, Characterization of ZnS nanoparticles synthesized by co-precipitation method. Chin. Phys. B 24, 046104 (2015)

    Article  Google Scholar 

  13. S. Liu, H. Zhang, M.T. Swihart, Spray pyrolysis synthesis of ZnS nanoparticles from a single-source precursor. Nanotechnology 20, 235603 (2009)

    Article  Google Scholar 

  14. G. Yue, P. Yan, D. Yan, X. Fan, M. Wang, D. Qu, J. Liu, Hydrothermal synthesis of single-crystal ZnS nanowires. Appl. Phys. A 84, 409–412 (2006)

    Article  CAS  Google Scholar 

  15. M.V. Limaye, S. Gokhale, S. Acharya, S. Kulkarni, Template-free ZnS nanorod synthesis by microwave irradiation. Nanotechnology 19, 415602 (2008)

    Article  Google Scholar 

  16. H. Yang, A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms. Mater. Res. Bull. 142, 111406 (2021)

    Article  CAS  Google Scholar 

  17. M. Fatolah, G.R. Khayati, Facile decoration of CdS nanoparticles on TiO2: robust photocatalytic activity under LED illumination. Zeitschrift für Naturforschung B 76, 405–412 (2021)

    Article  CAS  Google Scholar 

  18. S. Li, M. Cai, Y. Liu, C. Wang, K. Lv, X. Chen, S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): Intermediate eco-toxicity analysis and mechanistic insights. Chin. J. Catal. 43, 2652–2664 (2022)

    Article  CAS  Google Scholar 

  19. S. Li, C. Wang, M. Cai, Y. Liu, K. Dong, J. Zhang, Designing oxygen vacancy mediated bismuth molybdate (Bi2MoO6)/N-rich carbon nitride (C3N5) S-scheme heterojunctions for boosted photocatalytic removal of tetracycline antibiotic and Cr(VI): Intermediate toxicity and mechanism insight. J. Colloid Interface Sci. 624, 219–232 (2022)

    Article  CAS  Google Scholar 

  20. C. Wang, R. Yan, M. Cai, Y. Liu, S. Li, A novel organic/inorganic S-scheme heterostructure of TCPP/Bi12O17Cl2 for boosting photodegradation of tetracycline hydrochloride: kinetic, degradation mechanism, and toxic assessment. Appl. Surf. Sci. 610, 155346 (2023)

    Article  CAS  Google Scholar 

  21. C. Wang, S. Li, M. Cai, R. Yan, K. Dong, J. Zhang, Y. Liu, Rationally designed tetra (4-carboxyphenyl) porphyrin/graphene quantum dots/bismuth molybdate Z-scheme heterojunction for tetracycline degradation and Cr(VI) reduction: performance, mechanism, intermediate toxicity appraisement. J. Colloid Interface Sci. 619, 307–321 (2022)

    Article  CAS  Google Scholar 

  22. S. Li, M. Cai, C. Wang, Y. Liu, N. Li, P. Zhang, X. Li, Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): performance, toxicity evaluation and mechanism insight. J. Mater. Sci. Technol. 123, 177–190 (2022)

    Article  Google Scholar 

  23. M. Fatolah, G.-R. Khayati, P. Fatolah, Synthesis of CdS nanoparticles in water/DMF medium: an investigation on the effect of time and microwave irradiation. J. Sulfur Chem. 43, 366–375 (2022)

    Article  CAS  Google Scholar 

  24. M. Cai, Y. Liu, K. Dong, C. Wang, S. Li, A novel S-scheme heterojunction of Cd0.5Zn0.5S/BiOCl with oxygen defects for antibiotic norfloxacin photodegradation: performance, mechanism, and intermediates toxicity evaluation. J. Colloid Interface Sci. 629, 276–286 (2023)

    Article  CAS  Google Scholar 

  25. S. Li, M. Cai, Y. Liu, C. Wang, R. Yan, X. Chen, Constructing Cd05Zn05S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Adv. Powder Mater. 2, 100073 (2023)

    Article  Google Scholar 

  26. M. Cai, C. Wang, Y. Liu, R. Yan, S. Li, Boosted photocatalytic antibiotic degradation performance of Cd05Zn05S/carbon dots/Bi2WO6 S-scheme heterojunction with carbon dots as the electron bridge. Sep. Purif. Technol. 300, 121892 (2022)

    Article  CAS  Google Scholar 

  27. M. Cai, Y. Liu, C. Wang, W. Lin, S. Li, Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: degradation pathway, mechanism and toxicity assessment. Sep. Purif. Technol. 304, 122401 (2023)

    Article  CAS  Google Scholar 

  28. J. Kaur, M. Sharma, O. Pandey, Photoluminescence and photocatalytic studies of metal ions (Mn and Ni) doped ZnS nanoparticles. Opt. Mater. 47, 7–17 (2015)

    Article  CAS  Google Scholar 

  29. H. Hu, W. Zhang, Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles. Opt. Mater. 28, 536–550 (2006)

    Article  CAS  Google Scholar 

  30. S. Mohamed, Photocatalytic, optical and electrical properties of copper-doped zinc sulfide thin films. J. Phys. D Appl. Phys. 43, 035406 (2010)

    Article  Google Scholar 

  31. M.W. Porambo, H.R. Howard, A.L. Marsh, Dopant effects on the photocatalytic activity of colloidal zinc sulfide semiconductor nanocrystals for the oxidation of 2-chlorophenol. J. Phys. Chem. C 114, 1580–1585 (2010)

    Article  CAS  Google Scholar 

  32. R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard. Mater. 156, 194–200 (2008)

    Article  CAS  Google Scholar 

  33. A.A. Ashkarran, Absence of photocatalytic activity in the presence of the photoluminescence property of Mn–ZnS nanoparticles prepared by a facile wet chemical method at room temperature. Mater. Sci. Semicond. Process. 17, 1–6 (2014)

    Article  CAS  Google Scholar 

  34. M. Umar, H.A. Aziz, Photocatalytic degradation of organic pollutants in water. Org. Pollut.-Monit. Risk Treat. 8, 196–197 (2013)

    Google Scholar 

  35. D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol., C 6, 186–205 (2005)

    Article  CAS  Google Scholar 

  36. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol., C 9, 1–12 (2008)

    Article  CAS  Google Scholar 

  37. B. Liu, Y. Fang, Z. Li, S. Xu, Visible-light nanostructured photocatalysts—a review. J. Nanosci. Nanotechnol. 15, 889–920 (2015)

    Article  CAS  Google Scholar 

  38. G. Lu, Nanoporous materials–anoverview, Nanoporous Materials: Science and Engineering, 4 (2004).

  39. L.-S. Zhong, J.-S. Hu, L.-J. Wan, W.-G. Song, Facile synthesis of nanoporous anatase spheres and their environmental applications. Chem. Commun. (2008). https://doi.org/10.1039/b718300c

    Article  Google Scholar 

  40. N.Z. Logar, V. Kaucic, Nanoporous materials: from catalysis and hydrogen storage to wastewater treatment. Acta Chim. Slov. 53, 117 (2006)

    CAS  Google Scholar 

  41. H.B.M. Emrooz, M. Maleki, A. Rahmani, Azolla-derived hierarchical nanoporous carbons: from environmental concerns to industrial opportunities. J. Taiwan Inst. Chem. Eng. 91, 281–290 (2018)

    Article  Google Scholar 

  42. A. Zonouzi, H.A. Shahrezaee, A. Rahmani, F. Zonouzi, K. Abdi, F.T. Fadaei, K. Schenk, Efficient synthesis of some new chromenopyrimidine azo-dyes catalyzed by Cu/SBA-15. Org. Prep. Proced. Int. 50, 343–358 (2018)

    Article  CAS  Google Scholar 

  43. A. Rahmani, H.B.M. Emrooz, S. Abedi, A. Morsali, Synthesis and characterization of CdS/MIL-125 (Ti) as a photocatalyst for water splitting. Mater. Sci. Semicond. Process. 80, 44–51 (2018)

    Article  CAS  Google Scholar 

  44. M.A. Hillmyer, Nanoporous materials from block copolymer precursors, block copolymers II (Springer, Berlin, 2005), pp.137–181

    Google Scholar 

  45. S. Polarz, B. Smarsly, Nanoporous materials. J. Nanosci. Nanotechnol. 2, 581–612 (2002)

    Article  CAS  Google Scholar 

  46. W. Luc, F. Jiao, Synthesis of nanoporous metals, oxides, carbides, and sulfides: beyond nanocasting. Acc. Chem. Res. 49, 1351–1358 (2016)

    Article  CAS  Google Scholar 

  47. H.B.M. Emrooz, A.R. Rahmani, F.J. Gotor, Synthesis, characterisation, and photocatalytic behaviour of mesoporous ZnS nanoparticles prepared using by-product templating. Aust. J. Chem. 70, 1099–1105 (2017)

    Article  CAS  Google Scholar 

  48. H.M. Emrooz, A. Rahmani, Synthesis, characterization and photocatalytic behavior of mesoporous ZnS nanoparticles prepared by hybrid salt extraction and structure directing agent method. Mater. Sci. Semicond. Process. 72, 15–21 (2017)

    Article  Google Scholar 

  49. H.B.M. Emrooz, F.J. Gotor, Simultaneous adsorption and photocatalytic behavior of hybrid mesoporous ZnS–SiO2 nanocomposite. Mater. Res. Exp. 4, 085037 (2017)

    Article  Google Scholar 

  50. H.B.M. Emrooz, M.A. Heidari, S. Nazarpour, H. Karimi, “Compulsory co-precipitation”, a novel and rational route for the synthesis of nanomaterials; mesoporous zinc sulfide as the first case. J. Alloy. Compd. 860, 157928 (2021)

    Article  Google Scholar 

  51. G. Murugadoss, R. Jayavel, M. RajeshKumar, R. Thangamuthu, Synthesis, optical, photocatalytic, and electrochemical studies on Ag2S/ZnS and ZnS/Ag2S nanocomposites. Appl. Nanosci. 6, 503–510 (2016)

    Article  CAS  Google Scholar 

  52. M. Abbasi, U. Rafique, G. Murtaza, M.A. Ashraf, Synthesis, characterisation and photocatalytic performance of ZnS coupled Ag2S nanoparticles: a remediation model for environmental pollutants. Arab. J. Chem. 11, 827–837 (2018)

    Article  CAS  Google Scholar 

  53. R. Bose, G. Manna, N. Pradhan, Surface doping for hindrance of crystal growth and structural transformation in semiconductor nanocrystals. J. Phys. Chem. C 117, 20991–20997 (2013)

    Article  CAS  Google Scholar 

  54. M.A. Avilés, J.M. Córdoba, M.J. Sayagués, F.J. Gotor, Tailoring the band gap in the ZnS/ZnSe system: solid solutions by a mechanically induced self-sustaining reaction. Inorg. Chem. 58, 2565–2575 (2019)

    Article  Google Scholar 

  55. A.K. Guria, N. Pradhan, Doped or not doped: ionic impurities for influencing the phase and growth of semiconductor nanocrystals. Chem. Mater. 28, 5224–5237 (2016)

    Article  CAS  Google Scholar 

  56. M.A. Avilés, J.M. Córdoba, M.J. Sayagués, F.J. Gotor, Synthesis of Mn2+-doped ZnS by a mechanically induced self-sustaining reaction. J. Mater. Sci. 55, 1603–1613 (2020)

    Article  Google Scholar 

  57. S.K. Verma, R. Verma, N. Li, D. Xiong, S. Tian, W. Xiang, Z. Zhang, Y. Xie, X. Zhao, Fabrication and band engineering of Cu-doped CdSe06Te04-alloyed quantum dots for solar cells. Solar Energy Mater. Solar Cells 157, 161–170 (2016)

    Article  CAS  Google Scholar 

  58. M.H. Abib, X. Yao, G. Li, L. Mi, Y. Chang, H. Wang, D. Yu, Y. Jiang, Simulation-based optical spectra analyses and synthesis of highly monodispersed Mn-doped ZnSe nanocrystal. Nano 11, 1650086 (2016)

    Article  CAS  Google Scholar 

  59. A. Roychowdhury, S.P. Pati, S. Kumar, D. Das, Effects of magnetite nanoparticles on optical properties of zinc sulfide in fluorescent-magnetic Fe3O4/ZnS nanocomposites. Powder Technol. 254, 583–590 (2014)

    Article  CAS  Google Scholar 

  60. M. Jothibas, C. Manoharan, S.J. Jeyakumar, P. Praveen, I.K. Punithavathy, J.P. Richard, Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. Sol. Energy 159, 434–443 (2018)

    Article  CAS  Google Scholar 

  61. S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain, H. Manuspiya, Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder. Solid State Sci. 14, 299–304 (2012)

    Article  CAS  Google Scholar 

  62. M. Kuppayee, G.K. Vanathi Nachiyar, V. Ramasamy, Synthesis and characterization of Cu2+ doped ZnS nanoparticles using TOPO and SHMP as capping agents. Appl. Surface Sci. 257, 6779–6786 (2011)

    Article  CAS  Google Scholar 

  63. P. Kubelka, Ein Beitrag zur Optik der Farbanstriche (Contribution to the optic of paint). Zeitschrift fur technische Physik 12, 593–601 (1931)

    Google Scholar 

  64. E.M. Patterson, C.E. Shelden, B.H. Stockton, Kubelka-Munk optical properties of a barium sulfate white reflectance standard. Appl. Opt. 16, 729–732 (1977)

    Article  CAS  Google Scholar 

  65. S.P. Lonkar, V.V. Pillai, S.M. Alhassan, Facile and scalable production of heterostructured ZnS-ZnO/Graphene nano-photocatalysts for environmental remediation. Sci. Rep. 8, 13401 (2018)

    Article  Google Scholar 

  66. S. Li, J. Chen, S. Hu, H. Wang, W. Jiang, X. Chen, Facile construction of novel Bi2WO6/Ta3N5 Z-scheme heterojunction nanofibers for efficient degradation of harmful pharmaceutical pollutants. Chem. Eng. J. 402, 126165 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research project has been conducted under kind supports of the School of Advanced Technologies of Iran University of Science and Technology (IUST). The authors wish to thank the Iran Nanotechnology Innovation Council as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Banna Motejadded Emrooz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarpour, S., Rahmani, A. & Emrooz, H.B.M. Photocatalytic behavior of cauliflower-like mesoporous ZnS:M (M=Ni, Mn) nanostructures under LED illumination; newly developed synthesis method. Journal of Materials Research 38, 2727–2737 (2023). https://doi.org/10.1557/s43578-023-00997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00997-9

Keywords

Navigation