Skip to main content
Log in

Development of robocasted MWCNTS-calcium silicate 3D structures for bone regeneration applications with retention of MWCNTS using vacuum sintering technique

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Tissue-engineered scaffolds are widely researched for their potential to replace damaged or diseased bone. Similarly, this study reports 3D printing of multi-walled carbon nanotubes (MWCNTS) reinforced calcium silicate (2 CaO⋅SiO2) bone scaffold structures using Robocasting. The scaffold structures were 3D printed with 0.5, 1, and 2 wt% of MWCNTS in 2 CaO⋅SiO2 and carboxymethyl cellulose (CMC) solution as the binder. The printed structures were sintered at 1000 °C for 1 h in a vacuum to ensure the retention of MWCNTS. The addition of 2 wt% of MWCNTS in Calcium silicate structures exhibited an increase in compressive strength (18.57 ± 0.349 MPa) compared to pure Calcium silicate scaffold structures. In addition, the developed scaffolds were found to be hydrophilic, cytocompatible, enhance cell proliferation, and stable for 28 days under in vitro conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All data acquired during experimentation are disclosed and discussed in the manuscript.

References

  1. R. Dimitriou, E. Jones, D. McGonagle, P.V. Giannoudis, Bone regeneration: current concepts and future directions. BMC Med. 9, 1–10 (2011). https://doi.org/10.1186/1741-7015-9-66

    Article  Google Scholar 

  2. W. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact. Mater. 2, 224–247 (2017). https://doi.org/10.1016/j.bioactmat.2017.05.007

    Article  Google Scholar 

  3. R. Manonmani, T.M. Sridhar, Sintering temperature effects on nano triphasic bioceramic composite coated 316L SS for corrosion resistance, adhesion strength, and cell proliferation on implants. J. Mater. Res. 35, 580–590 (2020). https://doi.org/10.1557/jmr.2020.22

    Article  CAS  Google Scholar 

  4. H. Qu, H. Fu, Z. Han, Y. Sun, Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 9, 26252–26262 (2019). https://doi.org/10.1039/c9ra05214c

    Article  CAS  Google Scholar 

  5. J.A. Ramírez, V. Ospina, A.A. Rozo et al., Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing. J. Mater. Res. 34, 3757–3765 (2019). https://doi.org/10.1557/jmr.2019.323

    Article  CAS  Google Scholar 

  6. M.N. Collins, G. Ren, K. Young et al., Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater. 31, 2010609 (2021). https://doi.org/10.1002/adfm.202010609

    Article  CAS  Google Scholar 

  7. K.K. Moncal, D.N. Heo, K.P. Godzik et al., 3D printing of poly(ε-caprolactone)/poly(D, L-lactide-co-glycolide)/hydroxyapatite composite constructs for bone tissue engineering. J. Mater. Res. 33, 1972–1986 (2018). https://doi.org/10.1557/jmr.2018.111

    Article  CAS  Google Scholar 

  8. A.M. Deliormanll, A.H. Deliormanll, Finite element method simulation for the prediction of mechanical properties of three-dimensional periodic bioactive glass scaffolds. J. Aust. Ceram. Soc. 53, 299–307 (2017). https://doi.org/10.1007/s41779-017-0037-7

    Article  CAS  Google Scholar 

  9. S. Lamnini, F. Baino, G. Montalbano et al., Printability of carboxymethyl cellulose/glass-containing inks for robocasting deposition in reversible solid oxide cell applications. Mater. Lett. 318, 132239 (2022). https://doi.org/10.1016/j.matlet.2022.132239

    Article  CAS  Google Scholar 

  10. L. Rueschhoff, W. Costakis, M. Michie et al., Additive manufacturing of dense ceramic parts via direct ink writing of aqueous alumina suspensions. Int. J. Appl. Ceram. Technol. 13, 821–830 (2016). https://doi.org/10.1111/ijac.12557

    Article  CAS  Google Scholar 

  11. T. Cebe, N. Ahuja, F. Monte et al., Novel 3D-printed methacrylated chitosan-laponite nanosilicate composite scaffolds enhance cell growth and biomineral formation in MC3T3 pre-osteoblasts. J. Mater. Res. 35, 58–75 (2020). https://doi.org/10.1557/jmr.2018.260

    Article  CAS  Google Scholar 

  12. A. Paterlini, S. Le Grill, F. Brouillet et al., Robocasting of self-setting bioceramics: from paste formulation to 3D part characteristics. Open Ceram. 5, 100070 (2021). https://doi.org/10.1016/j.oceram.2021.100070

    Article  CAS  Google Scholar 

  13. R.L. Walton, E.R. Kupp, G.L. Messing, Additive manufacturing of textured ceramics: a review. J. Mater. Res. 36, 3591–3606 (2021). https://doi.org/10.1557/s43578-021-00283-6

    Article  CAS  Google Scholar 

  14. K.Y. Tsai, H.Y. Lin, Y.W. Chen, C.Y. Lin, T.T. Hsu, C.T. Kao, Laser sintered magnesium-calciumsilicate/poly-ε-caprolactone scaffold for bone tissue engineering. Materials 10, 65 (2017). https://doi.org/10.3390/ma10010065

    Article  CAS  Google Scholar 

  15. A. Sathain, P. Monvisade, P. Siriphannon, Bioactive alginate/carrageenan/calcium silicate porous scaffolds for bone tissue engineering. Mater. Today Commun. 26, 102165 (2021). https://doi.org/10.1016/j.mtcomm.2021.102165

    Article  CAS  Google Scholar 

  16. Y. Zhang, Y. Yu, F. Dolati, I.T. Ozbolat, Effect of multiwall carbon nanotube reinforcement on coaxially extruded cellular vascular conduits. Mater. Sci. Eng. C 39, 126–133 (2014). https://doi.org/10.1016/j.msec.2014.02.036

    Article  CAS  Google Scholar 

  17. S. Li, Y. Su, H. Jin et al., Effects of carbon nanotube content on morphology of SiCp(CNT) hybrid reinforcement and tensile mechanical properties of SiCp(CNT)/Al composites. J. Mater. Res. 32, 1239–1247 (2017). https://doi.org/10.1557/jmr.2017.12

    Article  CAS  Google Scholar 

  18. K.P. Thomas Heinze, Studies on the synthesis and characterization of carboxymethylcellulose. Die Angew. Makromol Chem. 266, 37–45 (1999). https://doi.org/10.4156/jcit.vol8.issue6.73

    Article  Google Scholar 

  19. A. Benchabane, K. Bekkour, Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym. Sci. 286, 1173–1180 (2008). https://doi.org/10.1007/s00396-008-1882-2

    Article  CAS  Google Scholar 

  20. A. Mahajan, A. Kingon, Á. Kukovecz et al., Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres. Mater. Lett. 90, 165–168 (2013). https://doi.org/10.1016/j.matlet.2012.08.120

    Article  CAS  Google Scholar 

  21. C. Li, X. Liu, J. Yi et al., Effects of sintering parameters on the microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites. J. Mater. Res. 31, 3757–3765 (2016). https://doi.org/10.1557/jmr.2016.436

    Article  CAS  Google Scholar 

  22. G. Mata-Osoro, J.S. Moya, C. Pecharroman, Transparent alumina by vacuum sintering. J. Eur. Ceram. Soc. 32, 2925–2933 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.02.039

    Article  CAS  Google Scholar 

  23. G.J. Arputhavalli, S. Agilan, P. Saravanan, Influence of sintering temperature on microstructure, magnetic properties of vacuum sintered Co (-Zn)-Ni-Al alloys. Mater. Lett. 233, 177–180 (2018). https://doi.org/10.1016/j.matlet.2018.08.152

    Article  CAS  Google Scholar 

  24. J. Ravoor, A study on retention of MWCNT in robocasted MWCNT-HAP scaffold structures using vacuum sintering technique and their characteristics. Ceram. Int. 48, 31289–31298 (2022). https://doi.org/10.1016/j.ceramint.2022.06.204

    Article  CAS  Google Scholar 

  25. N. Golafshan, E. Vorndran, S. Zaharievski et al., Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model. Biomaterials 261, 120302 (2020). https://doi.org/10.1016/j.biomaterials.2020.120302

    Article  CAS  Google Scholar 

  26. I. Denry, O.-M. Goudouri, J.A.H. Jefferey Harless, Rapid vacuum sintering: a novel technique for fabricating fluorapatite ceramic scaffolds for bone tissue engineering Isabelle. J. Biomed. Mater. Res. B 106, 291–299 (2018). https://doi.org/10.1002/jbm.b.33825.Rapid

    Article  CAS  Google Scholar 

  27. R. Choudhary, S. Koppala, S. Swamiappan, Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol-gel combustion synthesis. J. Asian Ceram. Soc. 3, 173–177 (2015). https://doi.org/10.1016/j.jascer.2015.01.002

    Article  Google Scholar 

  28. B. Yu, Z. Liu, C. Ma et al., Ionic liquid modified multi-walled carbon nanotubes as lubricant additive. Tribol. Int. 81, 38–42 (2015). https://doi.org/10.1016/j.triboint.2014.07.019

    Article  CAS  Google Scholar 

  29. R. Atchudan, A. Pandurangan, J. Joo, Effects of nanofillers on the thermo-mechanical properties and chemical resistivity of epoxy nanocomposites. J. Nanosci. Nanotechnol. 15, 4255–4267 (2015). https://doi.org/10.1166/jnn.2015.9706

    Article  CAS  Google Scholar 

  30. Y.R. Son, S.J. Park, Green preparation and characterization of graphene oxide/carbon nanotubes-loaded carboxymethyl cellulose nanocomposites. Sci. Rep. 8, 2–11 (2018). https://doi.org/10.1038/s41598-018-35984-2

    Article  CAS  Google Scholar 

  31. M. Tamaddon, S. Samizadeh, L. Wang et al., Intrinsic osteoinductivity of porous titanium scaffold for bone tissue engineering. Int. J. Biomater. (2017). https://doi.org/10.1155/2017/5093063

    Article  Google Scholar 

  32. M. Rasoulianboroujeni, A. Yadegari, S. Tajik, L. Tayebi, Development of a modular reinforced bone tissue engineering scaffold with enhanced mechanical properties. Mater. Lett. 318, 132170 (2022). https://doi.org/10.1016/j.matlet.2022.132170

    Article  CAS  Google Scholar 

  33. W. Wang, G. Caetano, W.S. Ambler et al., Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials 9, 992 (2016). https://doi.org/10.3390/ma9120992

    Article  CAS  Google Scholar 

  34. W.Y. Wang, J.Y. Shi, J.L. Wang et al., Preparation and characterization of PEG-g-MWCNTs/PSf nano-hybrid membranes with hydrophilicity and antifouling properties. RSC Adv. 5, 84746–84753 (2015). https://doi.org/10.1039/c5ra16077d

    Article  CAS  Google Scholar 

  35. T. Werder, J.H. Walther, R.L. Jaffe et al., On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B 107, 1345–1352 (2003). https://doi.org/10.1021/jp0268112

    Article  CAS  Google Scholar 

  36. Z. Mohammadalizadeh, S. Karbasi, S. Arasteh, Physical, mechanical and biological evaluation of poly (3-hydroxybutyrate)-chitosan/MWNTs as a novel electrospun scaffold for cartilage tissue engineering applications. Polym. Technol. Mater. 59, 417–429 (2020). https://doi.org/10.1080/25740881.2019.1647244

    Article  CAS  Google Scholar 

  37. R. Eivazzadeh-Keihan, A. Maleki, M. de la Guardia et al., Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review. J. Adv. Res. 18, 185–201 (2019). https://doi.org/10.1016/j.jare.2019.03.011

    Article  CAS  Google Scholar 

  38. M.J. Ditty, D. Ezhilarasan, Β-sitosterol induces reactive oxygen species-mediated apoptosis in human hepatocellular carcinoma cell line. Avicenna J. Phytomed. 11, 541–550 (2021). https://doi.org/10.22038/AJP.2021.17746

    Article  CAS  Google Scholar 

  39. M. Wu, T. Wang, W. Zha et al., Effects of nano-SiO2 particles on physio-chemical properties of bioactive tricalcium silicate cements. J. Aust. Ceram. Soc. 57, 9–20 (2021). https://doi.org/10.1007/s41779-020-00489-7

    Article  CAS  Google Scholar 

  40. P. Siriphannon, S. Hayashi, A. Yasumori, K. Okada, Preparation and sintering of CaSiO3 from coprecipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution. J. Mater. Res. 14, 529–536 (1999). https://doi.org/10.1557/JMR.1999.0076

    Article  CAS  Google Scholar 

  41. P. Coussot, Rheometry of Pastes, Suspensions, and Granular Materials: Applications in Industry and Environment (Wiley, New York, 2005)

    Book  Google Scholar 

  42. ASTM International (2013) Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle. ASTM B962-13 1-7

  43. Q.L. Loh, C. Choong, Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. Part B 19, 485–502 (2013). https://doi.org/10.1089/ten.teb.2012.0437

    Article  CAS  Google Scholar 

  44. ASTM C1424-10, Standard test method for monotonic compressive strength of advanced ceramics at ambient temperature. ASTM Int. 08, 1–13 (2010). https://doi.org/10.1520/C1424-15R19.ization

    Article  Google Scholar 

  45. S. Amirkhani, R. Bagheri, A. Zehtab Yazdi, Effect of pore geometry and loading direction on deformation mechanism of rapid prototyped scaffolds. Acta Mater. 60, 2778–2789 (2012). https://doi.org/10.1016/j.actamat.2012.01.044

    Article  CAS  Google Scholar 

  46. F. Alam, V.R. Shukla, K.M. Varadarajan, S. Kumar, Microarchitected 3D printed polylactic acid (PLA) nanocomposite scaffolds for biomedical applications. J. Mech. Behav. Biomed. Mater. 103, 103576 (2020). https://doi.org/10.1016/j.jmbbm.2019.103576

    Article  CAS  Google Scholar 

  47. ASTM International (2017) Standard Test Method for in vitro Degradation Testing of Hydrolytically Degradable Polymer Resins and Fabricated Forms for Surgical. ASTM B1635-16 7

  48. ASTM International (2019) Standard Guide for Quantifying Cell Viability and Related Attributes within within Biomaterial Scaffolds. ASTM F2739-19 8

  49. K. Liu, P. Liu, R. Liu, X. Wu, Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med. Sci. Monit. Basic Res. 21, 15–20 (2015). https://doi.org/10.12659/MSMBR.893327

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank DST-SERB, Government of India for completely funding this work and VIT, Vellore for providing all the characterization facilities, vacuum furnace, and rheometer.

Funding

This work has been funded by DST-SERB, Government of India under the Start-up research Grant (SRG/2019/002038).

Author information

Authors and Affiliations

Authors

Contributions

JR—Writing of original draft, review and editing, Experimentation, Data acquisition and analysis. SRE—Funding acquisition, Conceptualizing, Designing the study, Supervision, Writing- review and editing. DK—Experimentation, Data acquisition and analysis. UP—Experimentation, Data acquisition and analysis.

Corresponding author

Correspondence to Renold Elsen Selvam.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravoor, J., Selvam, R.E., Karuppan, D. et al. Development of robocasted MWCNTS-calcium silicate 3D structures for bone regeneration applications with retention of MWCNTS using vacuum sintering technique. Journal of Materials Research 38, 2389–2400 (2023). https://doi.org/10.1557/s43578-023-00968-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00968-0

Keywords

Navigation